Some Applications of
Algebraic System Solving

Eugenio Roanes-Lozano

Algebra Department
School of Education & School of Mathematics

Universidad Complutense de Madrid
eroanes(@mat .ucm.es

Partially supported by the research projects TIN2009-07901 (Spanish Government) and
UCM2008-327 910563 (UCM - BSCH Gr. 58/08, research group ACEIA, Spain).

Eugenio Roanes-Lozano: Some Applications of Algebraic System Solving TIME'2010

Firstly, | would like to thank the organizers of
TIME-2010 and the steering committee for inviting
me to give this plenary talk.

It is a great pleasure for me to have this
opportunity to talk to you today
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| would like my talk not to be a monologue,
so |l invite you to ask or express your opinions at any moment...

| wouldn’t like my talk to look like this:
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e | was born in 1962, and when | became 10 year old, the educational
system in Spain changed and we were moved to a “Modern
Mathematics” environment.

e Primary school teachers had to face teaching students up to 14 year
old (instead of up to 10 year old), and many, suspicious regarding
“modern mathematics” added (on their own) “old style” ugly looking
text books to the “modern mathematics” books.
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e These books were anything but didactically oriented.

e | was really afraid of the “ponds problems” (swimming pool was a too
modern word) like:
two sources providing ... liters per second and ... liters per second
(respectively) fill a pond of ... cubic meters. How long will it take to fill
the pond?

e They were solved using “rules of three” (even applied to problems with
more than 3 numerical values), that | never mastered.

e The key problem (apart from ugly details like units appearing only at
the very last step) is that the mathematical theory wasn’t known by the
student, so it was all rather bungle ...

Each different problem seemed to need a different approach.
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e So the main reason for the student’s (my) failure was the lack of a
theoretical basis for the problem.

¢ All problems disappeared when my father taught me an equational
approach to this sort of problems (i.e., as | was taught the needed
theory!).

e | was really surprised by the fact that | COULD THEN SOLVE ALL
PROBLEMS THAT COULD BE EXPRESSED AS A LINEAR
EQUATION OR LINEAR SYSTEM!!!
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e Now returning to 2010, most CAS (like DERIVE) include the possibility
to SOLVE ALGEBRAIC SYSTEMS (using Grdbner Bases, what is
usually kept hidden to the user, as Gauss’ method when solving linear
systems).

¢ This opens a new world of possibilities, as happened to me with linear
system solving!!! ANY (“reasonably” sized) PROBLEM that can be
expressed in terms of an ALGEBRAIC SYSTEM can then be
SOLVED!!!
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e Why is using a CAS a key issue?
e Firstly, because it can handle non-assigned variables:
(X+y)"2 - (x-y)"2 = 4xy
BIE(SIN(X22)5x) = 2% CO8(x2)

(these computations are of a qualitative higher complexity level than
those performed by “usual” computer languages).

e Secondly, because exact arithmetic is a must for relying on the
correctness of the computations (otherwise we would have to perform
numerical analysis computations regarding errors).

e Show DERIVE Example (digitos_aprox.dfw).




#1:

#2:

#3:

#4:

#5:

#6:

How many digits are correct?
Eugenio Roanes-Lozano
TIME 2010 (7-V11-2010)

Created: 1-VI11-2010

1.000001

x
1

2
ITERATE(APPROX(X == x , 6), i, 1, 30) = x = 1

1.000001

x
1

2
ITERATE(APPROX(x := x , 16), i, 1, 30) = x :=

~

2088892037531073768478669480691219817320136012776524630349058935~

~

1839050919558903697002137718037424015508171334853449442756817951~

~

7199955392756059526580396995899103101364913387302360400011404597~

~

8255303006942505540378607384264776359762400092946173857241699401~

~

0365505727773707863258378504481403183543057674896121959328475368~

~

2142344605345137814697796714081396654687333478956873816661397684~

~

4672846507076770550595712610133157620529940124277781042548470965~

1407902604158631936
x = 1.000001

2
ITERATE(APPROX(x := x , 32), i, 1, 30) = x ==

~

2088892025819431696035903453396348230115243233425706856278178975~

~

6420195159782665017569304753399453432958875158824230895379079081~

~

0494596627742250302955969554365841295627378123125714809466905178~



~

4828512380831831122191511007911802525501063893763582394158541334~

~

1606456434531820468926219236562145807564256126819656476950871113~

~

5360698584409496339073452920753879316377360220807285199647250816~

~

5316432231715976147561925974512883571150135465702854703590273973~

2655152337899279681

Only the first 8 digits coincide iIn
this case (precision 16 vs 32).

References:

E. Roanes-Lozano: Precision Indefinida y Matematica
Elemental. Bol. Soc. “Puig Adam” de Profs. de Matematicas
31 (1992) 33-52.
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AN ELEMENTARY INTRODUCTION TO ALGEBRAIC SYSTEMS

e L et us recall some details of my Keynote Lecture at TIME’2004.

e Approximate methods were the only alternative until the 60’s, when
the first general and effective method was found: Grobner bases.

e Although implementations of GB are incorporated to all CAS, they are
not widely known.

e DERIVE's SOLVE command for polynomial systems internally
calculates a GB if the system isn’t linear.
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SOLVING LINEAR SYSTEMS (MULTIVARIATE CASE)

#13: SOLVE(ly=x+2,y=-2x-1],[x, y]

we look for the values of x and y that satisfy all equations simultaneously:
#14: [X=-1Ay=1]

We are asking for the intersection of the solution sets corresponding to
each equation (lines in 2D, planes in 3D and hyperplanes if >3D)

e Linear systems can also have a unique solution, no solution or infinite
solutions:

10
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e In case the dimension of the space is greater than 2, the solution set of
the linear system can be a linear variety of intermediate dimension.

e Then,all we can do is to express it in a simpler way!

11
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ALGEBRAIC SYSTEMS
e An algebraic equation is an equation of the form:
general polynomial = 0

e An algebraic system, also called polynomial system, is a set of algebraic
equations.

12
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SOLVING AN ALGEBRAIC SYSTEM

e What happens when we ask DERIVE to SOLVE an algebraic system?

2 2
#36: SOLVE([x -1=y,-x -x+2=Y], [X,¥])
3 3}
#37: [x=1 A y=0,X=--—- A Y =-]
2 4

e We are asking DERIVE to look for the values of x and y that satisfy all
the equations simultaneously.

13
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e From the geometrical point of view, we are asking for the intersection of
the solution sets corresponding to the equations (curves in 2D; surfaces
in 3D or hypersurfaces in >3D):

e The solution set of an algebraic system is denoted algebraic variety,
and it can consist of unconnected components.

14
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e Agebraic systems with a unique solution, no solution or infinite solutions
exist.

15
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e And If the dimension of the space is > 2, the solution set of the
polynomial system could be an algebraic variety of intermediate
dimension:

R
#55: SOLVE([x +y -z-1=0,y-z=0], [x,y,z])
2l 2
#56: X +y -z2=1 A y-z=0]

16




Eugenio Roanes-Lozano: Some Applications of Algebraic System Solving TIME'2010
e R vs C: whether the system has solutions or not also depends on the set

where we are looking for such solutions. There are no real solutions for:
i s
#57: [X +y -2+ 1=0;-%x -y -2-1=0]
Pl or a2
#58: [x +y -z=0,x +y -z+3=0]

v @
i

e But the first syétem has complex solutions!:

2.2 22
#59: SOLVE([x +y -z+1=0,-x -y -z-1=0],[X,y])
2 2 P
#60: [ ity = Z- 2l s o e =) (x=1i, y=0, z= 0 satisfy both)
17
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GB FINDS THE LOWEST DEGREE (SIMPLEST) EXPRESSION
(a canonical basis of any given ideal, that characterizes it (once the
variable ordering and term ordering are chosen).

22

#65: SOLVE(x +y -z-1=0,z-1=0],[x,Y, 2])
w2

#66: [ = 2 A L =]

calls GB, that expresses the ideal as an intersection of a vertical cylinder
and a horizontal plane:
22
#67: GROEBNER BASIS([x +y -z-1,z—-1],[X,Y, 2])
2552
#68: [z-1,x +y -2]
18
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e A WHOLE NEW WORLD OF POSSIBILITIES OPENS TO US!!!

References:

E. Roanes-Lozano, E. Roanes-Macias, L. M. Laita: The Geometry of Algebraic
Systems and Their Exact Solving Using Groebner Bases. Computing in Science
and Engineering 6/2 (2004) 76-79.

E. Roanes-Lozano, E. Roanes-Macias, L. M. Laita: Some Applications of Grébner
Bases. Computing in Science and Engineering 6/3 (2004) 56-60.

E. Roanes-Lozano: Pictures at a DERIVE’'S exhibition (interpreting DERIVE’s
SOLVE command). Keynote Lecture at TIME-2004 conference. Published in: J.

Béhm (ed.): Proceedings of TIME 2004 (CD-ROM). bk teachware Schriftenreihe,
Nr. SR-41, 2004.

e Show DERIVE Example (3_color_grafos.dfw)

19




Graph 3-coluring (D. Bayer's 1dea)
Eugenio Roanes-Lozano
TIME 2010 (7-VI1I-2010)

Created: 3-VII-2010

THE PROBLEM: Can we decide when a given map is 3-colourable?

(This is NOT the famous "4-colour problem": all maps with connected countries can be
coloured with at most 4 colours in a way such that countries that share a border that is not
only a point are coloured with different colours).

Coding:

The countries are the vertices of the graph.

There is an edge between two nodes iff the two countries share a border.

Vertices are denoted by polynomial variables. For example: x,y,z,t

A graph is introduced as a vector of vectors. For example:

Xy
y z
z X
#1: Gl ==
t X
Tty
L Ttz |

The 3 colours are designated by the 3 cubic roots of unit:



3
#2: SOLVE(x—l:O,x):[x:——— vV X

®

As a colour is assigned to each vertex, for each vertex, x, x*3-1=0 must hold.

NERY
2

1
- — +
2

3
#3: pol_vertex(var) := var -1

3
#4: pol_vertex(x) = x -1

So, given a graph, we can consider the polynomials corresponding to the vertices:
[ 3 3 3
#5: MAP_LIST(pol_vertex(x), x, VARIABLES(Gl)) =ILx -1,y -1, z -
>l
1, t -1

Edges are denoted by polinomials of the form x"2+xy+y”2. The idea comes from the fact that
x"3-y*3=1-1=0 and:

3 3 2 2
#6: FACTOR(x -y ) = (x —=y)-(x + Xy +y)

(if one factor doesn't vanish, the other should).
2 2

#7: pol_edge(e) = e + e e + e
1 1 2 2

Given a graph, we can then consider the polynomials corresponding to edges:

2 2 2 2 2
#8: MAP_LIST(pol_edge(e), e, Gl) = [x + XY +Y,Y +VYy-Z+2zZ,X +

2 2 2 2 2 2 2]
XZ+2Z,X +tXx+t,y +ty+t,z +tz+t

And we can put them together:
#9: APPEND(MAP_LIST(pol_vertex(x), x, VARIABLES(Gl)),

3 3 3 3
MAP_LIST(pol_edge(e), e, Gl1)) = [x -1,y -1,z -1, t -1,

2 2 2 2 2 2 2 2 2
X +XY+Y ,Y +VYZ+2Z,X%X +X%XZ2+2Z,X%X +tx+t,y +

2 2 2]
te.y+t , z +t-z+ t



or even create a function that, given the graph, looks for its 3-colourings:
#10: three_col1(G) := SOLVE(APPEND(MAP_LIST(pol_vertex(x), X,

VARIABLES(G)), MAP_LIST(pol_edge(e), e, G)), VARIABLES(G))

This function can be used to create a Boolean function that checks wether the graph is
3-colourable or not:

#11: 1is_3_col1(G) := = three_col(G) = []

Example 1: there is no possible 3-colouring for G1

#12: is_3_col1(Gl) = false

Example 2: there is at least one possible 3-colouring for G2

Cx y ]
y z
z t
t X

#13: G2 =
u x
u 'y
u z
u t




#14: is_3_co1(G2) = true

Moreover: solving the system gives us the possible 3-colourings:

1 NeW 1
#15: three_col(G2) = |[x =1 Ay = - — + Az=1lAat=- — +
2 2 2
J3-i 1 J3-i 1 J3-i
AU = — — — , X =1 Ay =- — - Az=1
2 2 2 2 2
1 3. 1 NeW 1 J3-i
At = - — - AU=—- — + , X = — — + A
2 2 2 2 2 2
1 J3-i 1 J3-i
y=1Az=- — + At=1AuUu=- — - , X = —
2 2 2 2
1 NER 1 3 1 Nel
i AY = — — — AZ=—- — + At =-—
2 2 2 2 2 2
1 J3-i 1 NERY 1
_— - Au=1, x = - — - AYy=1Az=- — —
2 2 2 2 2
J3-i 1 J3-i 1 J3-i
At=1AuUu=- — + y X = — — — AY = -
2 2 2 2 2
1 J3-i 1 J3-i 1 NEN
— + AZ= - — — At =z - — + Au=1
2 2 2 2 2 2
Let us consider the first solution:
1 J3-i 1
#16: (three_col1(G2)) =|x =1 Ay = - — + AZ=1At=-—
1 2 2 2



that, if : 1 =red ; -1/2+sqrt(3)i/2=green ; -1/2-sqrt(3)i/2 =blue, is the 3-colouring:

So algebraic system solving has made it possible to decide wether any given
graph is 3-colourable or not (through a smart coding of the graph)!!!

References:

D.A. Bayer, “The Division Algorithm and the Hilbert Scheme”, Ph.D. Thesis, Harvard
University, 1982.

William W. Adams, Philippe Loustaunau: An Introduction to Grobner Bases. AMS Graduate
Studies in Mathematics, 1994 (pages 102-105).



e Railways:

(RENFE high speed 100 series)

are guided transportation systems:




Turnout: switch in the direct line position

To trail trough a switch set against.

What is a railway interlocking?

® Device that avoids combinations of signals and
switches that could lead in the worst case to a
collision or trailing.

e [t is not trivial!




Small station (trailing allowed):
1->1,2,3;14->14; 9->9,10,8; 3 ->3; 15->15 (trailing: 13,16,2,1,3)

<-V Trenis
Tren <V 16
) 13 5 4
it R 3 Tren R-> AR
FRNL A, i Peiids
4®\f1\ -R R> o0 )2/
6 S e N A 8 TESR B e 10
14 Tren R->

e Imaging the problem at a big station:

.. . e




A small part of the relays of a relay-based railway interlocking system of a big
railway station

Our approach:

Interpretation as an oriented graph:

4

X Y

the corresponding digraph is: >
)™~y

(*) if trailing through a switch set against is allowed.




¢ Pass from one section to an adjacent one must be:
- topologically possible
- allowed by the position of the switches of the turnouts

- allowed by the colour of the semaphores.

¢ But the transitive closure of the digraph should be
considered:

R 22
b3 7
b d 15
20 Ea
oy s
[ z e 3 R ", 4 — 5
11 -—r R—P_ 12
& — 7 — & v —- g 10
17 > =R 18
R o =
1w R

e And also the reflexive closure.




® The proposed situation is translated into an
algebraic system (equations of degree < 2).

¢ Curiously enough, the safetyness of the proposed
situation 1s equivalent to the compatibility of the
system.

Coding.- An idea of the author: system SIST
summarizes the info from the semaphore and switches
digraph.

Sections are represented by variables and trains by
positive integers.

a) Equation:

variable-num=0
1s included in SIST ifff train number num 1s in section
variable.

- For example: x-11=0




b) Equation

variablel-(variablel-variable2)=0
is included in SIST iff sections variablel and variable2
are adjacent and it 1s possible to pass from section
variablel to section variable2 according to the
position of the switches and obeying the semaphores.

- For example, / ‘

is represented including in SIST the equations:
x(x-z)=0 ; z(z-x)=0 ; y-(y-x)=0.

Remark.- We suppose that there 1s at most one train per
section. Consequently, there can’t be two equations
such as

variable-numl=0 ; variable-num2=0
(numl £ num?2).

in SIST.

Proposition.- A section is accesible by more than one
train 1ff SIS7T is incompatible.




Justification.- Train 2 in section x. x-2=0 in SIST.

If passing from x to y 1s allowed: x:-(x-y)=0 1is in SIST.

But then: x=2 = y=2.

And if 1t is possible to pass from section y to section m.

y-(y-m)=01s in SIST.
Consequently: m=2.

Intuitively, value 2 propagates through all the sections

accesible from x, not just to the adjacent ones..

Consecuence.- The proposed position of switches and
semaphores can be authorized iff SIST 1s compatible.

Example:
lorm) x24 T x29
I x23
%ﬂ@ z21
28 x19
[T
zl z2 u3 lorm| x4

7

S

x5 &) ®h b4
x1l

LOT]
x8 ¥9 @ xl0 \gé@ x11 @}27/ x12 %13

z28 &=

References:

E. Roanes-Lozano, E. Roanes-Macias, L.M. Laita: Railway
Interlocking Systems and Groebner Bases. Mathematics and
Computers in Simulation 51/5 (2000) 473-481.

Show: enclalba(GB).mws
Verbally: idea of curve contained in surface
Show: recta_euler.mws

4




Railway interlockings with Maple (using GB)

Eugenio Roanes-Lozano

| The GB package and our interlocking package have to be loaded first:
[ > restart;
[ > with(grobner) :

Warning, grobner is deprecated. Please, use Groebner.

[ > read("d:/congres/2010/TIME2010-Plenaria/Transparencias/trensolv.mpl’) :

EXAMPLE:

| Global variables inicialization:
[ > inicializa();

loom) x24 G

/@ x23
5{/2’2’@ x21

()]
x1 X2 %3 /M’g@ x4 \ x5 G =

x8 x9C®  x10 wS5e 11 g7 x12 x13

Sections:
> LV :=['x||i'" $§ i=1..29];
LV :=|xI,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21, x22, x23,x24,x25,x26,x27, x28,x29]
[ Adjacent sections:
| > adyacente (x24,x29);
[ > GD_;

{x24 (x24 — x29),x29 (x24 — x29)}
Position of the switches of the turnouts:
> desvio (x7,x6,x17,0);
> desvio(x13,x14,x17,0);




desvio (x5,x6,x16,0);

desvio(x13,x12,x16,0);

desvio (x5,x4,x19,1);

desvio (x12,x11,x27,0);

desvio (x27,x28,x26,0);

desvio (x25,x28,x26,0);

desvio (x10,x11,x25,0);

desvio (x10,x9,x15,0);

desvio (x8,x9,x15,0);

desvio(x1l,x2,x15,0);

desvio (x3,x2,x15,0);

desvio (x3,x4,x18,0);

desvio (x18,x20,x19,1);

desvio (x20,x22,x21,1);

desvio (x22,x24,x23,0);

GD_;

{xI (xI —x2),x10(x10—-x11),x10(x10—-x9),x11(x10—-x11),x11(x12-x11),x12(x12—-x11),x12(xI3—x12),x13 (xI3 —x12),
xI3 (x13 —x14),x14 (xI13 —x14),x15 (xI —x15),x15 (x10 —x15),x15 (x3 —x15),x15 (x8 —x15),x16 (x13 —x16),x16 (x5 —x16),
x17(x13 =x17),x17 (x7 —x17),x18 (x18 —x19),x18 (x3 —x18),x19 (xI18 —x19),x19 (x5 —x19),x2 (xI —x2),x2 (x3 —x2),
x20 (x18 — x20),x20 (x20 — x21), x21 (x20 — x21),x22 (x20 — x22),x22 (x22 — x24),x23 (x22 — x23),x24 (x22 — x24), x24 (x24 — x29),
x25 (x10 — x25),x25 (x25 — x28),x26 (x25 —x26),x26 (x27 —x26),x27 (x12 —x27),x27 (x27 — x28), x28 (x25 — x28), x28 (x27 — x28),
x29 (x24 —x29),x3 (x3 —x2),x3 (x3 —x4), x4 (x3 —x4), x4 (x5 —x4), x5 (x5 —x19), x5 (x5 — x6), x6 (x5 —x6),x6 (x7 — x6),
x7(x7 —x6),x8 (x8 —x9),x9 (x10 —x9),x9 (x8 —x9)}

olour of the semaphores:

semaforo (x6,x5,1);

semaforo (x29,x24,1);
semaforo (x24,x22,1);
semaforo (x23,x22,0) ;
semaforo (x21,x20,1);

VVVVVV VYV VVVVVYVVY

[

VVVYYVA

semaforo(x19,x18,0);
semaforo (x19,x5,0);
semaforo (x4,x3,0);
semaforo (x4, x5,0);
semaforo(x11,x10,0);
semaforo (x11,x12,0);
semaforo (x26,x25,0) ;
semaforo (x26,x27,0) ;
semaforo (x28, x25,0) ;
semaforo (x28,x27,0) ;
semaforo (x9,x10,0);
GS_;

{xI11(x10-x11),x11 (x11-x10),x11 (x11—-x12),x11 (x12-x11),x19 (x18-x19),x19 (x19—-x18),x19 (x19 —x5),x19 (x5 —-x19),
x23 (x22 —x23),x23 (x23 —x22),x26 (x25 — x26),x26 (x26 — x25),x26 (x26 —x27),x26 (x27 — x26), x28 (x25 — x28), x28 (x27 — x28),
x28 (x28 — x25),x28 (x28 — x27), x4 (x3 — x4), x4 (x4 — x3), x4 (x4 — x5), x4 (x5 — x4),x9 (x10 — x9),x9 (x9 —x10)}

VVVVV VYV VVYVVY




loom) x24 G

/@ x23
:;2/2'@ x21

x1 x2 X3 G x4 x5 G X

x8 x9C®  x10 wS5e *11 g7 x12 x13

Position of the trains:
tren(8,x29,1);
tren(1l,x7,1);
tren(10,x23,1);
tren(42,x19,1);
tren(15,x3,1);
tren(7,x11,1);
tren(62,x26,1);
PT_;

VVVV VYV VY

L {x11-"7,x19—-42,x23 -10,x26 — 62,x29 —8,x3 - 15,x7 -1}
[ The system to be solved is:

[ > (GD_ union PT_) minus GS_;
{xI (xI —x2),x10(x10—-x11),x10(x10—-x9),x12(x12-x11),x12(x13-x12),xI3 (x13 -x12),x13 (xI3 —x14),x14 (xI3 —x14),
x15 (x1 —x15),x15 (x10 —x15),x15 (x3 —x15),x15 (x8 —x15),x16 (x13 —x16),x16 (x5 —x16),x17 (xI13 —x17),x17 (x7 —x17),
xI18 (x18 —x19),x18 (x3 —x18),x2 (xI —x2),x2 (x3 —x2),x20 (x18 — x20),x20 (x20 — x21), x21 (x20 — x21),x22 (x20 — x22),
x22 (x22 — x24),x24 (x22 — x24), x24 (x24 — x29), x25 (x10 — x25), x25 (x25 — x28),x27 (x12 — x27),x27 (x27 — x28), x29 (x24 — x29),
x3 (x3-x2),x3 (x3—x4),x5(x5-x19),x5 (x5 —x6),x6 (x5—x6),x6 (x7—x6),x7 (x7 —x6),x8 (x8 —x9),x9 (x8 —x9),x11-17,

L x19 —42,x23 -10,x26 — 62,x29 — 8,x3 —15,x7 -1}
[ > #solve( (GD_ union PT_) minus GS_ , convert (LV_,set) ); #(no sol.)

[ The situation can be analyzed:
[ > tiempo:=time () :
> esSegura();
> time () -tiempo;
false

L 0.310
[ Let us check what is happening.

Train 1, departing from section x7 can stay at x7, go to x6, from there to x5 and from there to x19, where train 42 is!
| Train 8, departing from section x29 could reach (trailing some switches set against) section x3, occupied by train 15.
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Thes situation would be safe turning red (for instance) the semaphores controlling the movements from x6 to x5 and from x24 to x22:
[ > semaforo (x6,x5,0);
| > semaforo(x24,x22,0);

[ Let us analyse the new situation:
[ > #solve( (GD_ union PT_) minus GS_ , convert (LV_,set) ); # (hay sol.)

[ > tiempo:=time () ;
> esSegura();
> time () -tiempo;
tiempo = 64.542
true
0.151

[ END
[ >




RECTA DE EULER (GB method)

C(c,e)

G(g1,92)

Q(q1,92)

Eugenio Roanes-Macias & Eugenio Roanes-Lozano

| Theorem: The circumcenter, Q, baricenter, G, and orthocenter, O, of a triangle, ABC, are aligned, being QO=3*QG (vectors).

N(n1,n2)

A(0,0) M(m1,0)

[ Points considered (M,N,P are midpoints of sides):
A(0,0), B(b,0), C(c,e), M(m1,0), N(nl,n2), P(pl,p2), Q(ql,q2), G(g1,g2), O(01,02)
Parameters: b,c,e
| Variables: m1,n1,n2,pl,p2,q1,92,g1,82,01,02
[ > restart:

[ Hyipothesis and thesis polynomials:
"> hl:=2*ml-b:
> h2:=2*nl- (b+c) :

#M is the midpoint of AB
#N is the midpoint of BC

B(b,0)

> h3:=2*n2-e: #N is the midpoint of BC
> h4:=2*pl-c: #P is the midpoint of CA
> h5:=2*p2-e: #P is the midpoint of CA
> h6:=ql-ml: #0OM is perpendicular to AB
> h7:=c* (ql-pl)+e* (q2-p2) : #QP is perpendicular to AC
> h8:=n2*gl-nl*g2: #G,A,N are collinear
> h9:=p2* (gl-b)+(b-pl) *g2: #G,B,P are colinear
> hl0:=o0l* (c-b)+o2*e: #0OA is perpendicular to BC
> hll:=c* (ol-b)+e*o02: #0OB is perpendicular to CA
> tl:=(g2-02) *(gl-o0l)-(gl-ol) * (g2-02) : #Q,G,0 are colineales
{> t2:=(ol-ql)-3*(gl-ql): #00=3*QG
> t3:=(02-g2)-3* (g2-g2) : #Q00=3*QG
[ Equal GBs method
[ > hip:=[hl,h2,h3,h4,h5,h6,h7,h8,h9,h10,h1l1]:
[ > var:=ml,nl,n2,pl,p2,91,92,9l,g92,01,02:
[ > with(Groebner) :
[ > GBl:=Basis( hip , plex(var) ):
[ > hip_tes:=[hl,h2,h3,h4,h5,h6,h7,h8,h9,h10,h1l,t1,t2,t3]:
[ > GB2:=Basis (hip_tes,plex( var ) ):
> evalb (GB1=GB2) ;
{ true

[ GBS equal to <1> method

[ > #Basis( [h1l,h2,h3,h4,h5,h6,h7,h8,h9,h10,h1l,1-2*tl] ,
[ > #Basis( [h1l,h2,h3,h4,h5,h6,h7,h8,h9, h10,hll, 1-z*t2] ,
[ > #Basis( [h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h1l, 1-z*t3] ,
{ References:

plex (var)
plex (var)
plex (var)

)i
)i
)i

Eugenio Roanes-Macias, Eugenio Roanes-Lozano: Nuevas Tecnologias en Geometria. Ed. Complutense, Madrid, 1994.

[ END
[ >
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