Teaching Calculus and Numerical Analysis using CAS according to Bologna Process

J.M. González-Vida <u>T. Morales de Luna</u> M.L. Muñoz-Ruiz M.A. Atencia S. Merino

Universidad de Málaga (Spain)

TIME 2010 - TI-Nspire & Derive Strand

July 6- 10, 2010

Málaga (Spain)

T. Morales de Luna et al. Teaching Calculus and Numerical Analysis using CAS

Outline

- Background
- Bologna Process
- Calculus and Numerical Analysis
- 2 Learning by solving a physical example
 - Detecting edges of images
 - Previous notions on Calculus and Numerical Analysis
 - Solving the example

3 Conclusions

Introduction Background Learning by solving a physical example Conclusions Calculus and Numerical Analysis

Introduction

Context:	
Why?	The Bologna process has raised the point that learning should be centered on the student rather than the teacher.
How?	A methodology based on problems leads stu- dents towards <i>learning by doing</i> .
Where?	A Department of Applied Math comprises the wide range of skills needed to address <i>real</i> problems.
What?	Models in science and engineering require mathematical tools, from both (<i>theoretical</i>) Cal- culus and (<i>practical</i>) Numerical Analysis.

Background Bologna Process Calculus and Numerical Analysis

Outline

Introduction

Background

- Bologna Process
- Calculus and Numerical Analysis

2 Learning by solving a physical example

- Detecting edges of images
- Previous notions on Calculus and Numerical Analysis
- Solving the example

3 Conclusions

Background Bologna Process Calculus and Numerical Analysis

The society is changing

New skills are required in engineering:

- Leadership.
- Collaborative work.
- Communication.
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

The society is changing

New skills are required in engineering:

- Leadership.
- Collaborative work.
- Communication.
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

The school is changing

New abilities are promoted during school years:

- Online learning.
- Interactive and cooperative learning.
- Independent study.
- New environments: laboratories, projects, ...
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

The school is changing

New abilities are promoted during school years:

- Online learning.
- Interactive and cooperative learning.
- Independent study.
- New environments: laboratories, projects, ...
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

The University is changing:

Really?

- Inflexible structure.
- Bureaucratic work.
- Gap between research and teaching.
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

The University is changing:

Really?

- Inflexible structure.
- Bureaucratic work.
- Gap between research and teaching.
- ... But scientific knowledge is still necessary.

Background Bologna Process Calculus and Numerical Analysis

Outline

- Background
- Bologna Process
- Calculus and Numerical Analysis
- 2 Learning by solving a physical example
 - Detecting edges of images
 - Previous notions on Calculus and Numerical Analysis
 - Solving the example

3 Conclusions

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Background

• 1998 Sorbonne Declaration (France, Germany, Italy, UK).

... Europe is not only that of the Euro, of the banks and the economy: it must be a Europe of knowledge as well.

European Higher Education Area (EHEA) is first mentioned.

• 1999 Bologna Declaration.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Background

1998 Sorbonne Declaration (France, Germany, Italy, UK). ... Europe is not only that of the Euro, of the banks and the economy: it must be a Europe of knowledge as well.

European Higher Education Area (EHEA) is first mentioned.

• 1999 Bologna Declaration.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Background

 1998 Sorbonne Declaration (France, Germany, Italy, UK).
 ... Europe is not only that of the Euro, of the banks and the economy: it must be a Europe of knowledge as well.

European Higher Education Area (EHEA) is first mentioned.

• 1999 Bologna Declaration.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Background

• 1998 Sorbonne Declaration (France, Germany, Italy, UK).

... Europe is not only that of the Euro, of the banks and the economy: it must be a Europe of knowledge as well.

European Higher Education Area (EHEA) is first mentioned.

• 1999 Bologna Declaration.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Background

• 1998 Sorbonne Declaration (France, Germany, Italy, UK).

... Europe is not only that of the Euro, of the banks and the economy: it must be a Europe of knowledge as well.

European Higher Education Area (EHEA) is first mentioned.

• 1999 Bologna Declaration.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Create an European Higher Education Area (EHEA):

- Readable and comparable degrees.
- Undergraduate and postgraduate levels.
- ECTS^a-compatible credit systems.
- Include lifelong learning activities.
- European dimension in quality assurance.
- Free mobility of students and teachers.

^aEuropean Credit Transfer System

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Administrative issues:

- Degrees.
- Levels.
- Oredits.
- Mobility.
- No explicit reference to pedagogical methodologies...
- ... but the emphasis on quality is a suggestion that some teaching strategies should be improved.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

Administrative issues:

- Degrees.
- Levels.
- Credits.
- Mobility.
- No explicit reference to pedagogical methodologies...
- ... but the emphasis on quality is a suggestion that some teaching strategies should be improved.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

The EHEA *suggests* renovating methodologies:

Teacher centered

- In Spanish Universities, teaching has often (*uniquely?*) been based upon lectures.
- The current credit measures the teacher's work: 1 credit = 10 class hours.

Student centered

- Active learning requires doing projects, using technology support, ...
- ECTS credits measure the student's work: 1 credit = 25 work hours.

Background Bologna Process Calculus and Numerical Analysis

The Bologna Process

The EHEA *suggests* renovating syllabus:

- The undergraduate degree should provide *initial* training.
- General (transversal) competencies, rather than exhaustive knowledge, should be acquired at this level.
- The University degree should be integrated into lifelong learning.

Background Bologna Process Calculus and Numerical Analysis

Outline

- Background
- Bologna Process
- Calculus and Numerical Analysis
- 2 Learning by solving a physical example
 - Detecting edges of images
 - Previous notions on Calculus and Numerical Analysis
 - Solving the example

3 Conclusions

Background Bologna Process Calculus and Numerical Analysis

History of Calculus

Calculus has been formalized:

- Initially, techniques were algorithmic and applied: Newton, Leibniz, Euler, Gauss.
- The formal foundations of Mathematical Analysis are established in 1900: Hilbert.
- Formalization often obscures applications...
- ... but it shouldn't: formalization and algorithms are complementary.

Background Bologna Process Calculus and Numerical Analysis

History of Calculus

Calculus has been formalized:

- Initially, techniques were algorithmic and applied: Newton, Leibniz, Euler, Gauss.
- The formal foundations of Mathematical Analysis are established in 1900: Hilbert.
- Formalization often obscures applications...
- ... but it shouldn't: formalization and algorithms are complementary.

Background Bologna Process Calculus and Numerical Analysis

History of Numerical Analysis

Numerical Analysis has been applied:

- Numerical Analysis = Computers + Analysis + Large problems: von Neumann (1947).
- Techniques in Numerical Analysis are intrinsically algorithmic.
- The need for Numerical Analysis in applications is obvious.
- Numerical Analysis is often regarded as lacking rigour...
- ... but it shouldn't: formalization and algorithms are complementary.

Background Bologna Process Calculus and Numerical Analysis

History of Numerical Analysis

Numerical Analysis has been applied:

- Numerical Analysis = Computers + Analysis + Large problems: von Neumann (1947).
- Techniques in Numerical Analysis are intrinsically algorithmic.
- The need for Numerical Analysis in applications is obvious.
- Numerical Analysis is often regarded as lacking rigour...
- ... but it shouldn't: formalization and algorithms are complementary.

Background Bologna Process Calculus and Numerical Analysis

New Trends in Didactics of Calculus

Calculus Reform:

- Rule of four: graphical, numerical, algebraical and verbal presentation.
- Incorporate technology.
- Concepts and techniques stem from practical problems.
- Active learning: encourage the students to explore and investigate.

Background Bologna Process Calculus and Numerical Analysis

New Trends in Didactics of Calculus

Body and Soul Project on Applied Mathematics:

- Computers should result in a paradigm shift in Mathematics.
- Applied Mathematics = Computational Mathematics.
- Constructive (computational) methods show that Mathematics are both understandable and useful.

Background Bologna Process Calculus and Numerical Analysis

Calculus and Numerical Analysis

Calculus and Numerical Analysis:

- Problem Oriented Learning: use all the knowledge relevant to the problem including (but not limited to) Calculus and Numerical Analysis.
- Active Learning: find *real* solutions to *real* problems, including a final numerical solution, physically interpretable.
- Computer usage is pervasive: Numerical Analysis should be transversal.

Introduction Backgr Learning by solving a physical example Bologn Conclusions Calculu

Background Bologna Process Calculus and Numerical Analysis

Calculus and Numerical Analysis

Calculus subject in an engineering degree:

• Calculus of one variable:

Limits and continuity. Differentiation. Integration and methods of integration.

Infinite series:

Numerical series. Functional series. Power series. Taylor series. Fourier series.

Numerical methods:

Polynomial interpolation and approximation of functions. Numerical integration and differentiation. Roots.

• Calculus of several variables:

Real and vector valued functions of several variables. Limits, continuity and differentiation.

• Use of mathematical software:

Graphics. Curve fitting. Optimization.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Outline

Introduction

- Background
- Bologna Process
- Calculus and Numerical Analysis

2 Learning by solving a physical example

- Detecting edges of images
- Previous notions on Calculus and Numerical Analysis
- Solving the example

3 Conclusions

Introduction Detecting edges of images Learning by solving a physical example Conclusions Solving the example

- Humans can recognise different objects from a given image made only by lines (like sketches).
- Human eye can make some king of edge and pattern recognition process to recognize forms and objects.
- Thus, edge detection techniques are required for a image to be processed by any automatic system.
- Applications:
 - Automatic patterns and form recognition by computer systems.
 - Tracking moving objects (for example in a security cam video).
 - Optical Character Recognition (OCR).
 - Images edition.

- Humans can recognise different objects from a given image made only by lines (like sketches).
- Human eye can make some king of edge and pattern recognition process to recognize forms and objects.
- Thus, edge detection techniques are required for a image to be processed by any automatic system.
- Applications:
 - Automatic patterns and form recognition by computer systems.
 - Tracking moving objects (for example in a security cam video).
 - Optical Character Recognition (OCR).
 - Images edition.

- Humans can recognise different objects from a given image made only by lines (like sketches).
- Human eye can make some king of edge and pattern recognition process to recognize forms and objects.
- Thus, edge detection techniques are required for a image to be processed by any automatic system.
- Applications:
 - Automatic patterns and form recognition by computer systems.
 - Tracking moving objects (for example in a security cam video).
 - Optical Character Recognition (OCR).
 - Images edition.

- Humans can recognise different objects from a given image made only by lines (like sketches).
- Human eye can make some king of edge and pattern recognition process to recognize forms and objects.
- Thus, edge detection techniques are required for a image to be processed by any automatic system.
- Applications:
 - Automatic patterns and form recognition by computer systems.
 - Tracking moving objects (for example in a security cam video).
 - Optical Character Recognition (OCR).
 - Images edition.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

- Digital images consist of a number of pixels. They can be seen as a m × n matrix in which each element corresponds to a pixel.
- Information given by each pixel is coded by 8 bits, which corresponds to 256 grey levels, 0 corresponds to black and 255 to white.
- Let $I_{ij} = I(x_i, y_j)$ be the grey level corresponding to the pixel of coordinates (x_i, y_j) , i = 1, ..., m, j = 1, ..., n $(I_{ij} \in 0, 1, ..., 255).$

Introduction Detecting edges of images Learning by solving a physical example Previous notions on Calculus and Nu Conclusions Solving the example

- Digital images consist of a number of pixels. They can be seen as a m × n matrix in which each element corresponds to a pixel.
- Information given by each pixel is coded by 8 bits, which corresponds to 256 grey levels, 0 corresponds to black and 255 to white.
- Let $I_{ij} = I(x_i, y_j)$ be the grey level corresponding to the pixel of coordinates (x_i, y_j) , i = 1, ..., m, j = 1, ..., n $(I_{ij} \in 0, 1, ..., 255).$

Introduction Detecting edges of images Learning by solving a physical example Conclusions Solving the example

- Digital images consist of a number of pixels. They can be seen as a m × n matrix in which each element corresponds to a pixel.
- Information given by each pixel is coded by 8 bits, which corresponds to 256 grey levels, 0 corresponds to black and 255 to white.
- Let $I_{ij} = I(x_i, y_j)$ be the grey level corresponding to the pixel of coordinates (x_i, y_j) , i = 1, ..., m, j = 1, ..., n $(I_{ij} \in 0, 1, ..., 255).$

- Digital images consist of a number of pixels. They can be seen as a m × n matrix in which each element corresponds to a pixel.
- Information given by each pixel is coded by 8 bits, which corresponds to 256 grey levels, 0 corresponds to black and 255 to white.
- Let $I_{ij} = I(x_i, y_j)$ be the grey level corresponding to the pixel of coordinates (x_i, y_j) , i = 1, ..., m, j = 1, ..., n $(I_{ij} \in 0, 1, ..., 255).$

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Digital images

T. Morales de Luna et al.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

- *I_{i,j}* can be seen as the discrete values of a function *I(x, y)* of two variables.
- The gradient shows the variation of *I. Sharp* variations correspond to the existence of an edge.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

- *I_{i,j}* can be seen as the discrete values of a function *I(x, y)* of two variables.
- The gradient shows the variation of *I. Sharp* variations correspond to the existence of an edge.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Definition

An edge may be defined as a sharp change in image brightness.

T. Morales de Luna et al. Teaching Cal

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Outline

Introduction

- Background
- Bologna Process
- Calculus and Numerical Analysis

2 Learning by solving a physical example

- Detecting edges of images
- Previous notions on Calculus and Numerical Analysis
- Solving the example

3 Conclusions

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Functions of one variable

Definition

$$f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longrightarrow f(x)$

Derivatives

Average velocity

$$\frac{s(t_0+h)-s(t_0)}{h}$$

Instant velocity

$$\lim_{n\to 0}\frac{s(t_0+h)-s(t_0)}{h}$$

T. Morales de Luna et al. Teaching Calculus and Numerical Analysis using CAS

Derivatives

Average velocity

$$\frac{s(t_0+h)-s(t_0)}{h}$$

Instant velocity

$$\lim_{h\to 0}\frac{s(t_0+h)-s(t_0)}{h}$$

T. Morales de Luna et al. Teaching Calculus and Numerical Analysis using CAS

Derivatives

Derivative $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

Approximation

$$f'(x_0) \approx \frac{f(x_0+h) - f(x_0)}{h}$$

Derivatives

Derivative $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$

Approximation

$$f'(x_0)\approx \frac{f(x_0+h)-f(x_0)}{h}$$

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Functions of several variables

Definition

$$egin{array}{rcl} f: \mathcal{D} \subset \mathbb{R}^2 & \longrightarrow & \mathbb{R} \ (x,y) & \longrightarrow & f(x,y) \end{array}$$

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Partial derivatives and gradient

Partial derivatives

•
$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

• $\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$

Gradient

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Approximation

$$(y_0, y_0) \approx \left(\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}, \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}\right)$$

T. Morales de Luna et al.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Partial derivatives and gradient

Partial derivatives

•
$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

• $\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$

Gradient

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Approximation

$$(x_0, y_0) \approx \left(\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}, \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}\right)$$

T. Morales de Luna et al.

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Partial derivatives and gradient

Partial derivatives

•
$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

• $\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$

Gradient

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Approximation

$$abla f(x_0, y_0) pprox \left(rac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}, rac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}
ight)$$

Detecting edges of images Previous notions on Calculus and Numerical Analysis Solving the example

Vector valued functions of several variables

Definition

$$\begin{array}{rcccc} f: D \subset \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (x, y) & \longrightarrow & (f_1(x, y), f_2(x, y), f_3(x, y)) \end{array}$$

Outline

Introduction

- Background
- Bologna Process
- Calculus and Numerical Analysis

2 Learning by solving a physical example

- Detecting edges of images
- Previous notions on Calculus and Numerical Analysis
- Solving the example

3 Conclusions

How to detect edges

• We use a numerical approximation of the gradient:

$$abla I(x_i, y_j) \approx \left(\frac{I(x_i+h, y_j)-I(x_i, y_j)}{h}, \frac{I(x_i, y_j+h)-I(x_i, y_j)}{h}\right).$$

• For the sake of simplicity we can assume that distance between pixels is equal to 1, that is, h = 1:

$$\nabla I(x_i, y_j) \approx (I_{i+1,j} - I_{i,j}, I_{i,j+1} - I_{i,j}).$$

We shall denote ∇*I* = (*G_x*, *G_y*). Different numerical approximations of (*G_x*, *G_y*) will provide different results.

How to detect edges

• We use a numerical approximation of the gradient:

$$abla I(x_i, y_j) \approx \left(\frac{I(x_i + h, y_j) - I(x_i, y_j)}{h}, \frac{I(x_i, y_j + h) - I(x_i, y_j)}{h}
ight).$$

 For the sake of simplicity we can assume that distance between pixels is equal to 1, that is, h = 1:

$$\nabla I(\mathbf{x}_i, \mathbf{y}_j) \approx (I_{i+1,j} - I_{i,j}, I_{i,j+1} - I_{i,j}).$$

We shall denote ∇*I* = (*G_x*, *G_y*). Different numerical approximations of (*G_x*, *G_y*) will provide different results.

How to detect edges

• We use a numerical approximation of the gradient:

$$abla I(x_i, y_j) \approx \left(\frac{I(x_i + h, y_j) - I(x_i, y_j)}{h}, \frac{I(x_i, y_j + h) - I(x_i, y_j)}{h}
ight).$$

 For the sake of simplicity we can assume that distance between pixels is equal to 1, that is, *h* = 1:

$$\nabla I(\mathbf{x}_i, \mathbf{y}_j) \approx (I_{i+1,j} - I_{i,j}, I_{i,j+1} - I_{i,j}).$$

We shall denote ∇*I* = (*G_x*, *G_y*). Different numerical approximations of (*G_x*, *G_y*) will provide different results.

How to detect edges

 Once a numerical approximation of G_x and G_y is given, we shall assume existence of edges whenever the modulus of the gradient is greater than a given threshold level τ₀:

$$|G|=\sqrt{G_x^2+G_y^2}\geq au_0 \quad ext{or} \quad |G|=|G_x|+|G_y|\geq au_0.$$

Masks

(G_x, G_y) may be represented by masks:

Masks

(G_x, G_y) may be represented by masks:

Introduction	Detecting edges of images
Learning by solving a physical example	Previous notions on Calculus and Numerical Analysis
Conclusions	Solving the example

Masks

Other posibilities:

Prewitt (K = 1), Sobel (K = 2), Frei-Chen ($K = \sqrt{2}$).

Remarks

- Edge detection is a more complex task than it seems.
- Usually pre-processing techniques are required such as noise reduction.
- The results will strongly depend on the mask used and on the threshold.
- There are other methods based on the second derivative (laplacian).

Conclusions

- Reverse the definition-axiom-theorem-example pattern: first propose the **problem**, then explore needed knowledge.
- The **problem** is *interesting* and *useful*: Maths are *interesting* and *useful*.
- Learn together Calculus and Numerical Analysis: they both are relevant to the **problem**.
- Mathematics do not lack rigour, but formalization is a necessity that arises during problem solution.
- Mathematics are not oversimplified: the problem often leans students towards more knowledge than standard syllabus.