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ABSTRACT   

 
Mathematics education researchers are asking themselves about why technology 
has impacted heavily on the social environment and not in the mathematics 
classroom. The use of technology in the mathematics classroom has not had the 
expected impact, as it has been its use in everyday life (f.e. cell phone). What about 
teachers’ opinion? Mathematics teachers can be divided into three categories: 
Those with a boundless overflow (enthusiasm) that want to use the technology 
without worrying much about the construction of mathematical concepts, those 
who reject outright the use of technology because they think that their use inhibits 
the development of mathematical skills, and others that reflect on the balance that 
must exist between paper-pencil activities and use of technology. The mathematics 
teacher not having clear examples that support this last option about the balance 
of paper-pencil activities and technology, opt for one of the extreme positions 
outlined above. In this paper, we show the results of research on a methodology 
based on collaborative learning (ACODESA) in the training of mathematics 
teachers in secondary schools and implementation of activities in an environment 
of paper-pencil and CAS in the mathematics classroom. We note also that with the 
development of technology on the use of electronic tablets and interactive 
whiteboards, these activities will take on greater momentum in the near future. 
 

RESUMEN 

Los investigadores en educación matemática se preguntan por qué la tecnología ha 
impactado fuertemente en el medio social y no en el aula de matemáticas. El uso de 
la tecnología en el aula de matemáticas no ha tenido el impacto esperado como lo 
ha sido su uso en la vida corriente. ¿Cuál es la posición de los profesores? Los 
profesores de matemáticas se pueden dividir en tres tipos de categorías, aquellos 
que con un desbordamiento desmedido quieren utilizar la tecnología sin 
preocuparse mucho sobre la construcción de conceptos, aquellos que rechazan 
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completamente el uso de tecnología porque piensan que su uso inhibe el desarrollo 
de habilidades matemáticas, y otros que reflexionan sobre el equilibrio que debe 
de haber entre actividades en papel-lápiz y uso de tecnología. El profesor de 
matemáticas al no contar con ejemplos claros que soporten esta última opción 
sobre el equilibrio en las actividades de papel-lápiz y tecnología, opta por alguno 
de los extremos antes señalados. En este documento, queremos mostrar los 
resultados de investigación sobre una metodología basada en el aprendizaje en 
colaboración (ACODESA) en la formación de profesores de matemáticas en la 
escuela secundaria e implementación de actividades en ambientes de papel-lápiz y 
calculadora (CAS) en el aula de matemáticas. Queremos señalar también, que con 
el desarrollo de la tecnología sobre el uso de tabletas electrónicas y pizarrones 
interactivos, este tipo de actividades cobrarán un impulso mayor en un futuro 
inmediato. 
 
Introduction  

The use of technology in the mathematics classroom, for one reason or another, 
has failed to permeate the mathematics classroom. This, bearing in mind that the 
educational authorities are aware of the importance of using technology in the 
classroom. For example, in Québec, the Ministère de l'Education, du Loisir et du 
Sport (MELS, 1996) proclaims the importance of its use in the mathematics 
classroom, however, as it presented to the teacher of mathematics is naive, and 
even dangerous. 

Because the technology influences on mathematics and its use, is necessary 
for the student to control modern electronic tools like the scientific 
calculator... 
The technology does not guarantee student’s success in mathematics; 
calculators and computers, as word processing for a writer, are nothing more 
than tools… 

However, it enables students to acquire and understand new concepts 

quickly. [Highlighted by us]. (p. 6) 

We can put the educational authorities at the same level that some maths teachers 
who believe that everything is possible with the technology and concepts are 
acquired quickly and easily... 

Researchers in didactics of mathematics, who believe that technology is important 
in the development of mathematics, have conducted experiments that put us on 
guard against the ingenuity of the authorities and some teachers of mathematics 
with respect to the direct use of technology without didactic considerations. For 
example, Guin et Trouche (1999, p. 195-196), stated as follows: 

No more than 15% of teachers include graphing calculators in their teaching, 
despite the fact that all students have a graphing calculator in science classes 
[pre-university level]. Teachers have a tendency to oppose even the 
integration of new technologies at the elementary level. 

Also, they stated (Idem, p. 191) that, two groups of 50 students (pre-university 
students) were asked about the following limit: 

  
lim
x →∞

ln x + 10 sin x =∞ ? One group 
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using calculator: 75% of success; and the other one without calculator: 95% of 
success. 

Let us show another research conducted by Tall (2000, p. 213), with two groups, 
one using DERIVE and the other without technology. The students of the two 
groups (pre-university level) were asked to provide a conceptual explanation of: 

lim
h → 0

f x + h( )− f x( )
h

. The results were that with DERIVE: 0% of success; and, the No-

DERIVE group: 100% of success. 

These authors, Guin, Trouche, Tall, among others, are trying to show that the 
processes of instrumentation and instrumentalization (ROBARDEL, 1995) are not 
considered as complex processes that must be treated carefully in the mathematics 
classroom. 

From our point of view, the discussion should not be whether or not we agree to 
use technology. Rather, if we foster the use of technology, we as Guin, Trouche & 
Tall (among others), must conduct research that allows us to provide more clearly 
the advantages and disadvantages of using technology in the mathematics 
classroom to improve teaching strategies. 

This introduction to the problems of using technology in the mathematics 
classroom gives us a better idea about how to move forward on teaching strategies 
to improve mathematics learning in technological environments. A reflection is 
needed about: 

1) On the processes of instrumentation and instrumentalization that should be 
promoted in the mathematics classroom when dealing with technological 
artifacts, 

2) On the tasks and actions that should be promoted in the mathematics 
classroom in a technological context. Not all problems that were used in the 
past serves in a technological context (at least it needs to be adapted to the 
environment in which they are to be worked). 

3) The attention to the balance that should exist between activities in a pencil 
and paper environments and actions from a technological standpoint, 

If we look, in particular, on a theory of representation, and in general, in a 
transition from a constructivist theory to a social-interactionist theory of learning 
mathematics, we should consider various aspects such as follows. 

From a constructivist perspective (individual construction of knowledge) we have 
to consider the institutional representations (those that appear in textbooks, on 
computer and calculators screens’, etc): 

A) A mathematical representation is partial with respect to what they 
represent (Duval, 1993, 1995). 

B) A mathematical concept is constructed as an articulation among the 
representations of the concept under construction (Duval, 1993, 1995). 
Therefore, in the construction of a concept, each representation of a concept 
needs to be considered at the same level of education without giving a 
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priority to any of them. And processes of conversion among representations 
play a special role in the construction of the concept. 

From an interactional point of view, functional representations embedded in a 
design approach and analysis about the action needed to develop learning in a 
social construction of knowledge is important. That is: 

A) Design of the task and an analysis of the action (Leontiev, 1984, Hitt & 
Kieran, 2009) associated with it in a social environment of knowledge 
construction. 

B) The non-institutional representations (diSessa, 1991, Hitt & Morasse, 2009) 
linked to the action of the individual against an argument with another 
team member in the mathematics classroom and analysis of its evolution 
towards institutional representations within an atmosphere of social 
construction of knowledge. 

C) Technical processes and conceptualization of mathematics in technological 
environments and social interaction. 

While theoretical aspects about representations rose more than a century ago, a 
theory of representations from a constructivist point of view and linked to 
mathematics education was developed from 1980 to 2000. The issues dealt with 
were heavily focused on building institutional representations of knowledge from 
an individualist point of view. Also theories about the construction of knowledge 
from a social point of view emerged from early last century and gradually 
theoretical aspects of representations have been considered under these 
approaches on the social construction of knowledge. For example the work of 
Bourdieu (1980) with his notion of habitus reproduces the theory developed by 
Vygotsky, Luria & Lontiev among others with an approach that considers the 
internal and external representations as important to build in social-interactionist 
environments. 

In the context of construction of mathematical concepts related to the 
representations in a social interaction, we can mention diDessa et al. (1991), 
Gonzalez et al., (2008), Hitt & Morasse (2009) who analyzed a construction of 
mathematical concepts from a social-interactionist point of view. It is in the 
approach of these authors, among others, where we can see more clearly the 
importance of designing mathematical tasks and on the analysis of actions 
students did when solving mathematical problem situations. In Hitt & Cortes 
(2009) and Hitt & Kieran (2009) they consider activities in a social-interactionist 
setting that involve technical processes and conceptualization both in an 
environment of paper-pencil and calculator. 

Research questions in relation to teaching of mathematics in a socio 

interactionist approach of learning 

In a first approach to the problem, from a methodological point of view, we were 
concerned to the following (Hitt, 2007, Hitt & Cortes, 2009): 

• What methodology is appropriate in an environment of social interaction in 
the learning of mathematics? 
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• How to integrate collaborative learning, scientific debate and self-reflection 
(ACODESA methodology) in the mathematics classroom? 

• What is the role of the calculator when solving problem situations in a 
social environment of construction of knowledge? 

 
Articulation among representations 

In what follows, we consider a project that gave birth to the ACODESA 
methodology in a CAS environment (Hitt, 2007). In an approach on the use of 
different representations we proposed, to a population of secondary teachers in 
service who were studying a master degree of didactics of mathematics 
(methodology used during 2 semester courses), an activity which at first we 
thought it was simple and could be an exercise that would allow the introduction 
of processes for converting from one representation to another. 

Students in this activity were already familiar to work in teams according and to 
discuss with the whole class, according to the ACODESA methodology (see Hitt 
2007), which in brief considers five stages: 

• Individual work: production of functional representations to understand the task; 

• Teamwork on the same task. Process of discussion and validation. Refinement 

of functional representations; 

• Discussion (could became a scientific debate). Process of discussion and 

validation (refinement of representations); 

• Back on the task individually (individual work: reconstruction and self - 

reflection); 

• Institutionalization. Processes of institutionalization and use of institutional 

representations. 

The activity was: 

Calculate the derivative of the function: f x( )=
x

2
sin

1

x

 
 
 
 
 
 si x ≠ 0

0 si x = 0

 
 
 

  
. 

The team work was carried out as usual, the teacher could identify, by looking at 
the production of students, who either did not know what to do to get a derivative 
of a piecewise function; or, as it happened with a large majority of students, their 
products were related to a conception that consist in: "Given a piecewise function, 
the derivative of the function is calculated directly by differentiating each of the 
expressions that define the function." That is, in our case, the calculation of the 

derivative of the piecewise function was the result: f ' x( )=
2x sin

1

x

 
 
 
 
 
 − cos

1

x

 
 
 
 
 
 si x ≠ 0

0 si x = 0

 
 
 

  
 

The teacher found that students did not perform any conversion among 
representations. Students indicate that there was no discussion and that the 
activity was a simple exercise about differentiation. The teacher asked one of the 
teams to show their results to the rest of the class. 
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A student (a teacher in service, named Wendy), mentions only that the derivative 
of the piecewise function provides the result above indicated. 

The teacher requested further arguments, and another student (a teacher in 
service, named Lidia), who we can say she is a formalist, mentioned verbally that 
the derivative of the piecewise function was related to the calculation of the 
derivative of the 1st term, and then, the calculation of the lateral limits as x tends 
to 0. Finally, she obtained the same result as Wendy, but she provided a different 
argument. 

The teacher asked Lidia to write down on the blackboard what she was saying. 

Lidia realizes that something was wrong because it was not as immediate that 

lim
x →0

2x sin
1

x

 
 
 
 
 
 − cos

1

x

 
 
 
 
 
 

 
 
 

 
 
 = 0 . In fact, Lidia mentioned that lim

x →0
2x sin

1

x

 
 
 
 
 
 

 
 
 

 
 
 = 0 , but 

lim
x →0

−cos
1

x

 
 
 
 
 
 

 
 
 

 
 
 ≠ 0

 

and as a consequence, she cannot confirm that the limit was 0. Indeed, 

she has doubts about what could be the derivative of the function at zero. 

Once Lidia came back to her seat, another student (teacher in service, named Victor), 

affirmed that, given Lidia’s analysis, the derivative at zero DOES NOT EXIST. 
 

Scientific debate emerged in the mathematics classroom 

Wendy argues that the derivative at x = 0, is 0. This time, the argument provided was a 
graphical representation obtained with her calculator, the graphic representation of the 
function “does not oscillate at x = 0”. The teacher asked her to show the result to her 
teammates, and she showed what is in Figure 1. 
 
 
 
 

 
 

Figure 1. Screen showed by Wendy 
 
Alicia, on the contrary, believes that the derivative does not exist "No, the function has 
so many oscillations", as Victor claimed. 

Victor notes that, in general, is not convenient to have full confidence to the calculator; 
because the calculator can provide a nice graphic, but is not really so. It adds that: "... 
there really are many oscillations and is not that (the graph) that has a nice behavior." 

The majority believed that Lidia is right (that a derivative must exist at x = 0, but 
different to zero) and Victor and Wendy were wrong. Wendy under this flow of 
opinions mentioned then: "I think I'm the only one to say that the derivative at 0 is 0, 
they may be right." The course ends, students and teachers continue the discussion for 
20 minutes without really providing another argument. 

The teacher mentioned that given the arguments put forward and the lack of consensus, 

according to ACODESA methodology, suggests the need for reflection at home and that 

the next course will recommence the activity. 

In the following course, Lidia begun the discussion: “The derivative of this function [f 

(x)] (see Figure 2), is equal to 0 for x = 0; however, there is no way that this function is 
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continuous!” Lidia used the calculator to show that it is not possible to decide on the 

derivative at x = 0: “The graph has many oscillations, there, close to 0, therefore, I have 

the impression that you can not glue the zero! The graph is a source of information, but 

the graph is not reliable when we do zooms, the graph shows oscillations and a vertical 

line.” 

This means that Lidia did zooms around (0, 0). Adding emphatically that the function is 

discontinuous at zero a fortiori.  

 

Figure 2. Lidia’s graphic representation 

During the discussion, Wendy uses her calculator all the time, and then the teacher 
asked about her opinion. Wendy stated that the result she had obtained that the 
derivative at 0 is 0, is true. Then she went to the blackboard to show a new 
algebraic argument: 

lim
h →0

f 0 + h( )− f 0( )
h

= lim
h →0

h 2 sin
1

h

 
 
 
 
 
 − 0

h
= lim

h →0
h sin

1

h

 
 
 
 
 
 = 0 

Wendy's argument is correct, but all doubts expressed before emerged and the majority 

disagrees. Some even try to find an error in her procedure. For example, Irene says, "I'm 

not sure, but for h = 0, we have something like sinus of the infinite." 

We can see that Irene’s conception is like the conception of the majority of high school 

and some college students have that when we are saying that “h tends to zero” they 

think that “finally”, “it means that h = 0”. This conception can also be detected in some 

teachers (as Irene). 

Victor intervened likely to insist that an error must exist in the algebraic treatment, he 

says: "If we accept the result [Wendy’s] as true, then we must accept that 

lim
x →0

2x sin
1

x

 
 
 
 
 
 − cos

1

x

 
 
 
 
 
 

 

 
 

 

 
 = 0

 

What is impossible! There is a clear contradiction. " 

Wendy, always using her calculator, responds with another argument, but now a visual 

one; she says: “but it is true that the derivative of this function is 0, ISSS 0, graphically 

is the horizontal line.”  Then she says that in any case, she wanted them to show her 

where the error was in her algebraic approach. She did not get a response to her 

request... 

During the discussion, the majority of the students used the calculator. Victor came to 

the front of the classroom and connected his calculator to show different windows using 

the view screen of the calculator (see Figure 3)... 
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Figure 3. Victor’s CAS production 

This leads to a complete destabilization of the students... 

Wendy reacted to defend herself... saying that should not have full confidence to the 
calculator ... (she used exactly the same arguments given by Victor). Indeed, she 
showed a summary of several cases when the calculator provided inaccurate and/or 
false results during the course. 

We have reached a very important point in this scientific debate. Victor mentions 
something that is a key to solve the conflict, the articulation among representations, he 
mentions that surely must be an error in the algebraic treatment, but at the same time; he 
says, he could not really reconcile the visual results showed by the calculator with the 
algebraic treatment. 

Again the lesson has finished, but this time the students are discouraged, a feeling of 
powerlessness prevails in the classroom, and students seek the answer to the teacher. 
The teacher reminds them that the contract was that immersed in the ACODESA 
methodology; it is their duty to confirm or not the results. The teacher asked them again 
to reflect at home... 

The discussion begun again in the following lesson, the division among students was 
patent. However, some minutes after the discussion was initiated, Victor said: "The 
derivative of a differentiable function is not necessarily continuous," Then, at that 
moment, everyone understood that the error was in the belief that “The derivative of a 
differentiable function is necessarily continuous," believe that implicitly Lidia 
transmitted to all of them. Victor mentions that the whole problem was in that 
interpretation, and what Wendy did, was right! 

First, we can see that in a problem solving process, Duval's theoretical framework does 
not allow an analysis of the situation. In this case, it is not only conversion among 
representations; it is about algebraic arguments assembled with visual arguments in 
relation to a correct resolution free of contradictions. The situation requires to be aware 
of the contradiction and then to perform a mathematical process and coordination 
between representations to solve the contradiction. This could be possible because the 
collaborative environment of learning. Students made a considerable effort to discover 
that (two lessons an a half, and reflections at home). In fact, students were facing a 
cognitive obstacle given by a conception: "If a function is differentiable then its 
derivative is continuous." The contradiction was solved and in fact they had a counter 
example of that proposition, surpassing the cognitive obstacle. 
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Research questions in relation to a design of activities for 10th grade 

secondary students 

Again immersed in a CAS environment, our research questions about a specific 
design of activities for secondary students, had to do with (see Hitt & Kieran, 
2009): 

What is the role of the technique in the conceptualization of mathematics? 

Is there an interaction between technique and conceptualization? 

Can we speak of a conceptual understanding of a technique? 

Activities for secondary students (10th grade) 

In a new project led by Kieran at the Université du Québec à Montréal (UQAM), the 
team designed activities for 10th grade secondary students, in CAS environments. 
Eight activities were designed, and researchers asked several high school teachers’ 
opinions on the use of these activities. Some were modified according to their 
suggestions and finally reached the final version (see 
http://www.math.uqam.ca/APTE/Taches.html). 

 
Methodology 

In relation with this project, different experimentations were designed, included 
experimental groups of different countries:  

• 3 classes (two in English-speaking school, and other French speaking) in 
Montreal, Canada, during the period from Sept-Feb (2004-2005); 

• 1 class in Portland, USA; 

• 2 classes in Toluca, Mexico; 

• Repetition of the experiment in the Montreal Anglophone school, with a 
different classroom group of students (Sept.-Dec. 2005). 

 
Design of activities 

The design of activities was developed taking into account the curriculum of 
Quebec (2004) for students in 10th grade. Eight activities were designed and 
tested in the classes as mentioned in the methodology. In what follows, we are 
centered on the activity 6. 

The activity 6, was related to the factorization of xn - 1. This task is a classical 
activity in the mathematics curriculum in several countries. For example, Munier & 
Aldon (1996), made not one but three experiments (1990, 1991 & 1993) around 
the same activity with 11th grade students in France:  

• Using paper and pencil (work in teams, 2 hours), 

• Using DERIVE (they thought that technology will facilitate the task…) 

• Using DERIVE in a large project (three months) 
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What is different in our approach? 

The difference in the design of our activity in relation to the factorization of xn - 1 
(and in general with other activities designed) is the balance we believe it is 

important to provide to the paper and pencil activities and their relationship 

with the use of the calculator. In our theoretical framework, precisely we 
distinguish whether one or other approach and the students’ actions that 

relate these approaches. 

 
Notation used in our learning model 

The notations we use to identify students’ actions are the following (see Hitt & 
Kieran, 2009): 

• Task with paper and pencil TASKP-P; 

• Task with CAS TASKCAS; 

• Technique involving paper and pencil TECHP-P; 

• Technique involving CAS TECHCAS; 

• Semiotic production with paper and pencil PRODP-P; 

• Semiotic production with CAS PRODCAS; 

• A P-P task provoking a semiotic production TASKP- P
TECHP−P

→ PRODP- P
 that 

depends on a technique TECHP-P. 

• A CAS task provoking a semiotic production TASKCAS
TECHCAS

→ PRODCAS
 that 

depends on a technique TECHCAS. 

• Construction of a theory related to a technique: 

- TASKP- P
TECHP−P

→ PRODP- P

 

 
 

 

 
  ----> THEOP-P (the dotted arrow means 

an internal construction) 

- TASKCAS
TECHCAS

→ PRODCAS

 

 
 

 

 
  ----> THEOCAS (the dotted arrow means 

an internal construction) 

• Conversion between productions: PRODP-P →→→→ PRODCAS and vice versa 

PRODCAS →→→→ PRODP-P. 

• Possible articulation between techniques and construction of a theory: 

-  (the dotted arrows mean an 
internal construction). 

In Activity 6, the theoretical constructs we have designated as THEOn, n ∈ {1, 2, 3, 
4). The activity 6, was designed to be worked in stages, where it was implicitly 
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referred to the formation of conjectures, the use of counter examples to reject 
some conjectures, and argumentations processes (at this level students do not 
know what is a mathematical proof). 

Stage 1. Remembering factors. 

The intention of this phase was to promote remembering notable products and 
comparing of the results with the calculator. 

Stage 2. THEO1: Given the expression (xn – 1)  for a specific n, it is equivalent to: 

(x – 1) (xn-1 + xn−2 +…+ x + 1)– this theory based on the telescoping 
technique. 

In this phase, we expected students to construct a technique (telescoping 
technique) 

Stage 3. THEO2: The equivalence of “PRODP-P and TECHP-P” with “PRODCAS and 
TECHCAS”  

Considering the work of Guin & Trouche and Tall mentioned in the introduction, 
we put special attention in the design of this phase, asking the students to 
conciliate their productions in paper and pencil using the technique learned in 
phase 2, with the results provided by the calculator. This point is very important. 
Mathematicians and teachers have developed insights and knowledge that permit 
them to predict the results they're getting by using technology. However, students 
who do not have these skills, they tend to believe blindly in the results provided by 
the calculator or the computer without properly assimilating them in a process of 
problem solving. A calculus of a limit as requested by Guin & Trouche, to a 
mathematician or a professor is easy work, either directly calculating it or doing a 
correct interpretation of the graphic representation. However, students have a 
hard time in the classroom to do that kind of work, because their teachers 
probably did not pay attention to develop this kind of skills necessary to identify 
meaningful units in Duval’s (1995) sense, when converting from one 
representation to another. 

The intention of this phase was to promote reconciliation processes between 
students’ pencil and paper productions with the results provided by CAS. 

Stage 4. THEO3: The conjecture that (xn – 1) will have exactly two factors, (x –1) 
and (xn−1 + xn−2 +…+ x + 1), when n is odd (a false conjecture). 

When we asked students about the factorization of xn – 1, n ∈ {2, 3, 4, 5, 6}. Our but 
was to promote the false assumption that it would have exactly two factors (x -1) 
and (xn-1 + xn−2 +…+ x + 1), when n is odd. 

 
Stage 5. Involving conceptual change – disproving a conjecture and generating a 

new one. 

THEO4: Rejecting previous conjectures to produce a new one: (xn – 1) will have 
exactly two factors, (x –1) and (xn−1 + xn−2 +…+ x + 1), when n is a prime number. 

In this phase, students were asked to factoring xn – 1, n ∈ {7, 8, 9, 10, 11, 12, 13}. 
Our but was that students would realize that their initial guess was false using the 



 12

x9 – 1 = (x – 1) (x2 – x + 1) (x6 + x3 + 1) as a counter-example. This would allow the 
production of a new conjecture that could be verified and partially validated using 
the calculator, that is xn – 1, will have exactly two factors, (x –1) and (xn−1 + 
xn−2 +…+ x + 1), when n is a prime number. 
 

Stage 6. Coordinating theories or distinguishing among theories 

At this stage we asked the students the calculation of factorizations with n a very 
large number, so that if previous results applied correctly, they could obtain the 
correct results: Factoring xn – 1, n ∈ {2004, 3003, 853}. 

 

Stage 7. Justifying conjecture -- or deepening of theory -- through proving 

In this phase, students were asked to explain why (x + 1) is always a factor of xn
 − 1 

for even values of n, n ≥ 2. Because students do not know what is a mathematical 
proof, arguments were expected to convince their teammates about the generality 
of the result. 

Students were interviewed, and about this activity, in a period of one hour and 10 
minutes (see Hitt & Kieran, 2009) two boys working together came to discover the 
main point of the conjecture. In this interview there was no possibility of 
continuing with the last phase on argumentation and validation of the conjecture 
because it was to be developed in class with the whole group in the next lesson. In 
this same interview, if one of the students used the calculator, the other was 
writing the results, and the other way around. We can say that it was a 
coordination of actions when using the calculator. In the Eureka moment the 
students were using big numbers to test their expectations, that working 
exclusively in a paper and pencil environment is not possible to experiment with 
big numbers. 

Discussion 

Our design of ACODESA methodology (see Hitt, 2007, Hitt & Morasse, 2009, Hitt & 
Cortes, 2009) was implemented to promote learning in social interaction 
environments and use of technology. In Kieran’s project, the design of activities 
was the principal but (see http://www.math.uqam.ca/APTE/Taches.html). In both 
projects, the intention was to provide the teacher with a framework to use in the 
mathematics classroom. 

Our task design and analysis of the actions are important to take into account for 
future design and research. We believe that must be a balance in the activities of 
pencil and paper and technology.  

With our design of activities and collaborative learning processes in contexts of 
social interaction, we have managed to generate in the classroom processes of 
conjecture, argumentation and processes of validation. These aspects we consider 
necessary to develop in the mathematics classroom before the formal process of 
mathematical proof. 
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We believe that a collaborative learning methodology and the ACODESA 
methodology and design activities that balance the pencil and paper production 
and use of technology would have a greater impact in the mathematics classroom. 
Necessary impact if we truly want to influence on the use of technology in the 
mathematics classroom. 
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