TIME 2010, Malaga

Using Rational Arithmetic to Develop a Proof
“What Josef and Carl Saw”

Josef Bohm, Wiirmla, Austria and Carl Leinbach, Gardener, USA

Josef, the publisher of the DERIVE & TI-CAS Newsletters revised the DNL#22 (originally dated from 1996)
with one of Carl’s and Marvin’s Laboratory papers:

D-N-L#22 Carl’s and Marvin’s Laboratory 2 p29

Finding a Limit via
Geometric Reasoning
Carl Leinbach and Marvin Brubaker, USA

Before we begin this investigation, adjust the graphics window to our needs using the Set > Aspect
Ratio > 1:1 option. The screen should look similar to the figure below.
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[0,0] n=0

0,1 n=1
Consider the following sequence of points: P, = [0.1]

[1,0] n=2

TP . +1P_, otherwise

Notice that this sequence is defined recursively. DERIVE allows us to make recursive definitions. We use the
IF statement.

P(n):=IF (n=0, (0, 0],IF(n=1,([0,1],IF(n=2,[1,0],1/2P(n-3)+1/2P(n-2))))

In this case we had to nest the IF statements three deep. That is because we had three special cases. This
function, because of its recursive nature, is slow to evaluate for an n of any size, whatsoever. Nonetheless,
author

VECTOR (P (n),n,0,10)
and plot the sequence.

(It is not necessary to simplify the expression — giving a matrix of points. But take care that you have
activated the Option > Simplify before plotting or Approximate before plotting in the plot window.

Set the Points in the Display Options Connected and Size Small.

The next figures show the evaluation of the first 10 terms of the sequence and also the first 20 terms. If we
move the crosshair on the graph where the plot is dense, i.e., the point of apparent convergence we get a
reading of approximately [0.4, 0.4].
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We can zoom in and then we read off the
coordinates of the crosshair [0.40029, 0.40042].

We can show the last term of the sequence given
right above and we get a similar result:
[0.40039..., 0.40039 ...]. ‘

Of course, we had not proved any result.
However, the visual evidence is convincing that a

limit does exist ([0.4, 0.4]?) and we have a visual
illustration of the process of convergence. \




As Carl wrote, the recursive function is slow — try for n = 50! With DERIVE 5 and higher we can
write a small program — without applying the interesting recursive function from above — which
allows to calculate much more elements of this sequence.

Josef’s comment was:

The challenge is still there: Proof that the limit is [0.4, 0.4]!

Josef wrote to Carl which was the beginning of an exchange of emails.

8 January 2010
Dear Carl,

I am now revising DNL#22 which contains Carl’s and Marvins’s Lab #2,
"Finding a Limit via Geometric Reasoning".

I had to change some things due to the fact that DERIVE has changed a lot
since 1996. I attach the revised contribution. Hope that you are
satisfied with the new form (including a small program).

My question is: do you have a proof for the limit [2/5, 2/5]?

Best regards
Josef

11 January 2010
Josef -

I have not started on Lab 2, but hope to get to it before we leave
on Wednesday morning. I have been working on meeting the (now revised)
deadline before our Costa Rica trip. I enclosed the vastly revised paper
in the hopes that you may find the example that I did on “Time Since
Death” useful for your upcoming workshop. The referees wanted me to make
my examples more "beefy", i.e. do some more substantial mathematics and
involve the CAS more than I did in the original paper we submitted.

Dear Pat and Carl,
please don’'t hurry - the proof is not so important. Enjoy your
holidays.

12 January 2010
Josef -

While I was in the doctor's examination room waiting for the doctor
to arrive, I tore off a piece of the paper covering the examination table
and started to write out terms of the sequence. I got up to 16 terms.

5. Then prove that the 1lim(P(4*1i)) = 2/5.

At the moment everything is based on my suppositions, not proven fact.
I will keep working. Just wanted to keep you up to date.

some days later
Dear Carl,
Thanks for your efforts.
I am on a very similar way - to investigate the pattern of the
numerators.

Hi Carl,
I attach my ideas for proving the limit.



27 January 2010
Josef -

I have attached the proof of the limit. I worked on it mainly on
the plane ride to Costa Rica and a little bit during our wvisit to Costa
Rica. It took a little more than I expected and as I note there is still
one part that I want to clean up. I gave you an outline of that part.

It is essential to the argument and I don't like the fact that it gets
rather messy with the arithmetic.

Josef - 3 February 2010
I sent you this about a week ago and hadn't heard back. I was
wondering what you thought. I think that it could make a good talk on
combining the use of the rational arithmetic display of DERIVE to
stimulate conjectures for solid mathematical analysis and then developing
a proof. This is what we have been talking about for years. What do you
think? BTW, I see that your though path and mine crossed at few crucial
points. I was thinking that maybe we could develop a joint DNL article
or a TIME talk on this type of use of DERIVE. Once again, what do you
think?
-Carl

This was the first time when TIME 2010 and a possible common talk were mentioned! And Carl
did not give up his idea:
8 February 2010

Josef I have mentioned a joint presentation at Malaga or a DNL article
(your choice). Here is how I thought it could go:

History: The DNL #22 article attributed to Marvin and Carl; a request
from Josef for an analytic proof of the limit

Observation Phase: Writing a brief program to examine terms of the
sequence; the advantage of the rational arithmetic calculations and print
out of DERIVE (and other CAS's)

Conjectures: What Josef saw (even though we worked independently, you
were first); what Carl saw; putting conjectures to the test: Using
mathematical induction to construct a proof

What do you think? I like the idea, because it uses a skill that we hope
to develop amongst our students and uses CAS in much more than a "button
pushing mode", which is what some of our antagonists accuse proponents of
using CAS in teaching say we are professing.

16/18/20 February 2010
Josef -

Here is the promised draft of the Malaga presentation. Let me know
what you think? Once we have the final form for the abstract, I will
submit it.

-Carl

Dear Carl,

It looks good,; I am busy filling the gap(s) in my PROOF. Maybe
that we could add one sentence about possible generalizations (changing
the initial values, ...).

I attach a DERIVE file containing a general form for creating our
sequence of points together with a nonrecursive way to create the
sequence with the requested lim. Josef



8 March 2010

To time2010@ctima.uma.es

Please, find attached in this mail a (lecture or workshop) proposal for
the (ACDCA strand) (TI-Nspire and Derive strand) (Please, indicate the
appropriate format and strand).

This is a Lecture Proposal for the TI-Nspire & Derive Strand
Thank you,

Carl Leinbach

How Carl Attacked The Challenge

Let’s suppose that a student had seen the Fibonacci sequence and the proof that the limit of the ratio of
successive terms of that sequence converges to the “Golden Mean.”

Fey 1+ NE
lim — =

n—oe 2
" 2

This approach simply can not be mimicked. It leads nowhere. WHY?

A next approach might be to try to visualize the terms of the sequence and look for some patterns. Suppose
we try to familiarize ourselves with the nature of the sequence without using the features of a CAS, i.e. print
out the decimal approximations to the sequence:
001 0 05 05 03 0.5 035 0375 0435 035 040625 040625 0390625 0.40625 0398375 0.3084375 04023375 0.3984375
0100505 0,25 05 0375 035 0475 035 0.40625 040625 0.390525 0.40625 0.3984375 D.3984375 040234375 03984375 0.400390625
0400390625 0,400390625 0.3994140625  0,400390525

0.400390625 0.3994140625  0.400390625 0.3999023437

What patterns do you see?

Here’s What He Saw

001 0 05 05 02 0.5 0375 0,375 0.4375 0375 040625 040625 0.390625 0.40625 0.3984375  0.3984375 0.40234375  0.3584375

AA7 71
01005 05 02 05 0,375 0,375 04375 0,375 0.40625 040625 0.390625 0.40625 0.3984375 03984375 040234375 03984375 0,400350625

0.400390625 0400390625 0.3994140625  0.400390625

0.400390625 0.3994140625  0.400390625 0.3999023437

Observation 1: Every term of the first sequence lags one term behind the second sequence. Thus, we really
only need to deal with one sequence.

Proof: (Using the Principle of Mathematical induction)
Base Case: Look at the terms of the sequence printed out above

General Case: Assume the result holds for all X <#n. Then

1

b, = 5(1)17—3,1 +F,,, ) = 5(3,74,2 +F,,, ) (1)
1 1
P ,= E(Pn—4,2 +F_5, ) = E(Pn—4,2 +h.,, ) (2)

Where P, ; designates the n-th term in the first sequence and P, ; the same term in the second
sequence. The second equality in both (1) and (2) are a result of the induction hypothesis.



001 00

w

05 0,25 0.5 037 0375 04375 0,375 0.40625 0.40625 0.390625 0.40625 0.3984375  0.3984375 0.40234375  0.3984375
N N

>

A A
01005 05 0.5 05 0375 0375 04375 0375 040625 0.40625 0.390625 0.40625 0,3984375 0.3984375 040234375  0.3984375 0.400390625

w

0.400390625  0,400390625 0.3994140625  0,400390625

0.400390625 0.3994140625  0,400390625 0.3999023437

Observation 2: P4, ;= Py,, foralln=0,1,2,3, ...

Proof: Atthe moment, it seems like the definition of the sequence is not going to get us to an obvious proof
of this conjecture.

Let’s see if something pops out by looking at the sequence in its rational number presentation. So let’s turn
to DERIVE:

ptsln, ptl =
Prog
pt= [0, 0; 0, 1; 1, 0]
k=4
#1: Loop
Ifk=n
RETURN pt
pt = APPEND(pt, [1/2.(ptyck - 23 + ptyk - 22010
ki=k+1
#2:  pts(24)’

1 1 1 1 3 3 7 3 13 13 25 13 51 51 103 51 205 205 409 205

2 2 4 2 & & 16 & 32 32 64 32 128 128 256 128 512 512 1024 512
#3:
1 1 1 1 3 3 7 3 13 13 25 13 51 51 103 51 205 205 409 205 &9

2 2 4 2 & & 16 & 32 32 654 32 126 128 256 128 512 512 1024 512 2048

Observation 3: P, ,=P,,=P,,,, foralli=123,...

Proof: Assume that the result holds for all £ <i

P, = %(1)41‘4,2 +P ) ) = %(Bt(il)l + B0 ) = %(Pmmz,z +h s ) =

1
= E(P‘“*z’z + 1)4,«,32 ) = ])41',2

by definition of the recursive sequence.

The next to last equality was a result of the induction hypothesis.

. 1 i .
Finally, P,,,, = E(P4 22 P, ,.’2) = P,,, by the sequence definition and the first part of this proof.

If we combine Observation 1 and Observation 3 we have the proof for Observation 2. Thus, the part of the
“Geometric Reasoning” that states that the limit of the sequence of points lies on the line y = x is indeed
correct.

But:
What is the value of the limit?

Finding the Limit of {Py;; }

Finding this limit and then invoking observation 3 and one more observation, we can easily use a classic €, 6
proof to show that the limit of this subsequence is the limit of the entire sequence.



Looking at the sequence of first coordinates, we see that the even terms for i > 2 (remember I call the first
term P, ) have successive powers of two in the denominator . Here is a DERIVE program and its result to
look at this sequence:

Even_Terms(n, ew) :=
Prog
pt= [0, 0; 0, 1; 1, 0]
ew = [0, 1]
k=4
Loop
Ifk=n
RETURN ev
pt = ARREND(pt, [1/2.(ptytk - 3) + ptytk — 22013
If MODk, 2> = 1
ey = APPEND(ev, [ptikil])
ki=k+1

Even_Terms(35)

1 1 3 7 13 25 51 103 205 409 &19 1639 3277 6553 13107 26215

2 ‘ 4 ‘ & ‘ 16 I 32 I 64 I 128 ‘ 256 I 51z ‘ 1024 I 2048 ‘ 4096 I &192 I 16384 ‘ 32768 ‘ 65536

Observationd: P, =P, + ( 21) foralli=1,2,3,... and {2} denotes the floor function.

Proof: Once again, we will assume that the result holds for all £ <i.

We go back to the basic definition for the basic definition sequence, P,, and work from
there.

1)21',1 = %(PZill + PzH,l ) = %(PZi—},l + })Z(i—l),l)

This argument is laden with notation and not terribly instructive, so let’s give only an overview of how it

goes:
Break the attack into two cases: i even and i odd 1i.e. 2i a multiple of 4 and not a multiple of 4. It is
really the first case that we want, but need to prove it for all even terms. Basically, Observations 1
and 3 get the P,; 3, term above to a previous multiple of 4 and then we work back up. The
arithmetic gets messy and the exponents are a little hard to handle, but it eventually all works out.
Note that the sign change always takes place at the multiples of 4. As was mentioned: Observations
1 & 3 are the keys.

i-1
=Py +% fori=1,2,3, ...,and thus,

Observation 5: P,

4i,1

( l)k 1 ( I)A 1
e =

k 1

Proof: This is just a matter of extracting the terms from Observation 4.

Observation 6: lim P, | = i and, thus, hmPM2

1 =
Proof: We turn this one over to DERIVE: — k = —

Finally, we need only show that the sequences of first and second coordinates converge. We show that they
are Cauchy Sequences of Real Numbers and use the fact that the Real Numbers are a complete metric space,
i.e. all Cauchy Sequences converge.



Observation 7: The sequences {P,; } and {P,, } are Cauchy Sequences.

Proof: Let ¢ > 0, Observationsl, 3, and 4 have shown that for any two adjacent terms in the interval

from 4i to 4(i+1) the absolute value of the differences are: 0, !

?,?’F5
. 1 2
the largest of these differences, —, and say that [P . ——=(< £
2 4H,1 5| 4
Now, choose N such that for n > N, L < and 2

J15a s
(PP )= ‘ﬂ[z],l){ﬂ[zp ‘%j‘(ﬁml ‘%j

Thus, P, is a Cauchy Sequence and hence converges to the same limit as Py; .

<¢

1ZJ-_}%J|:

.. 2
The sequence Py;; is just one term ahead of Py;; and, thus, also converges to —.

Carl Is Finally Finished!

How Josef Attacked The Challenge

My first approach:

This was the function for creating the visualisation, giving a sequence of points:

p(ﬂ) =
Ifn=010
[0, 0]
Ifn=1
[o, 11
ItTnz?2
[1, 0]

1/2-P(n =30 + 1/2-P(n = 20
VECTORCP(nD, n, O, 200"

respectively. Take

<§ then if m, n > N we have

1 1 1 1 3 3 7 3013 13 3 13 51 51
o001 0 — — — — - - -
2 2 4 2 8 8 16 8 32 32 6 32 128 128
1 1 1 1 3 3 7 3 13 13 3 13 51 51 103
010 — — — — — - - -
2 2 4 2 8 8 16 8 32 32 e 32 128 128 256
103 ol 205

256 128 512

128 512 512

[ inspected the (sorted) numerators of the 1st components (the x-values) in order to find the
pattern:



Because of the recursive nature of the definition it needs a long calculation time to find the list
of the first 100 numerators!! The next function works iterative and is much much faster:

pts(n, m = 172, pt) =

Prog
pt:= [0, 0; 0, 1; 1, 0]
k =4
Loop
Ifk=n
RETURN pt
pt = APPEND(pt, [m-(ptyCk = 3) + ptyck = 20010
k +1
1 1 1 1 3 3
0 01l 0 — — —= — — -
2 4 2 8 8
pts(10)" =
1 1 1 1 3 3 7
01 0 — _— _—— —
2 2 B z 8 8 16

SORTCVECTOR(CNUMERATORCkD, k, (pts(60))111))

(0, 0,0 1,21,12, 1,1, 3, 3, 3, 7, 13, 13, 13, 25, 51, 51, 51, 103, 205, 205, 205, 409, 819, 8§19,
819, 1639, 3277, 3277, 3277, €553, 13107, 13107, 13107, 26215, 52429, 52429, 52425, 104857,
209715, 209715, 209715, 419431, 838861, 838861, 838861, 1677721, 3355443, 3355443, 3355443,

6710887, 13421773, 13421773, 13421773, 26843545, 53687091, 53687091, 53687091, 107374183]

which is without counting repeated appearances:
[0, 1,3, 7,13, 25,51, 103, 205, 409, 819, 1639, 3277, 6553, 13107, 26215, 52429, 104857, 209715,
419431, 838861, 1677721, ....]

Starting with 7 we have always a package of 4 values containing the first and then three times the next
value. | investigated the sequence of values from above starting with » = 4 which gives element 7:

[

=4 7= 2°+3

=5 13= 2.7-1 = 2°4+2.3-1

=6  25= 2:13-1 = 244+2%.3-3

n=7 51= 2.25+1 = 2542%.3-2.3+1

n=8 103 = 2:51+1 = 26424.3-22.3+3

=9 205= 2:103-1 = 27+2%.3-27.3+2:3-1

=10 409 = 2.205-1 = 28426.3-2%.3+2%3-3

n=11 819= 2409+ = 2°427.3-23.3+2%3-2.3+1
=12 1639= 2-819+1 = 210428.3 26.3424.3-22.343
The elements of the sequence formed by the first row of P(») from above are the numerators divided
by 2",

I start with the elements with n =4, 8, 12, ... and try finding a general formula for the numerators



This is the "funny part" of the problem!!

4.9 - 2 i-1 4.k 21 -2 4.k
il 2 +3- 2 2 -3-2 - I 2
k=0 k=0
4-1 + 1
2 3
#2: _—
5 5
4-1 + 1
2 3
+ —
#3, 5 5
VECTOR , i1, 0, 10
4.1
z
7 103 1639 26215 419431 6710887 107374183
#4: 1, '

16 256 4096 65536 1048576 16777216 268435456

1717986919 27487790695 439804651111

L} Ll
4294967296 68719476736 1099511627776

4-i + 1
2 3
+ — - 4.1
#5: 5 5 3.2 2
= E—
4.1 5 5
2
- 4.1
3.2 2 2
#6: Tim + — | = .
10 5 5 5

Derive simplifies expression #1 to a nice tformula. Applying VECTOR I can check the correctness of
expression #5 and in the last step the limit of the partial sequence is given (even without a CAS).

5
I repeat the procedure for elements with n = 5, 9, 13, ... and end again with the limit %

4.1 -1 1-1 4.k 31 -2 4.k
#7: 2 +3.2. ¥ 2 -32. ¥ 2 -1
k=0 k=0

I can proceed in a similar way for the remaining elements of the sequence.
Forn=6,10, 14, ...

4.4 21 -1 4-k i-1 4.k Al € 19 — 2 <
> +3.2. 35 2 _3.3 2 And finally forn=3,7. 11,15, ...

k=0 k=0



- 4.7 = 3
2 2 3 819 13107 209715 3355443
VECTOR| — = —— 7, 0, 10| = | — 3 5 . . .
5 5 8 128 2048 32768 524288 8388608
53687091 858993459 1374:895347 219902325555 3518437208883
134217728 2147483648 34359738368 549755813888 8796093022208
- 4. =3
2 2 2
Tm | — - =
100 5 5 5
. - . 2
All partial sequences tend to the same limit. so the limit is —
5

I must admit that [ was not really satisfied with my “PROOF”™, be cause | could not show that the

pattern of the numerators and of the fractions will remain the same until infinity.

Inspired by Carl’'s PROOF and by the fact that only natural numbers are involved |

was quite sure that Proof by Induction must be the right "recipe"!

My next approach:

T used my formulae from above for generating a list of all fractions appearing in the sequence:

=k -k -1 -k -2 =k =3
2 2 2 3.2 2 2 3.2 2
#4: plk) = —_— ———— - : + —
5 5 5 5 5 & 5
1 1 3 7
2 4 & 16
13 25 51 103
32 64 128 256
205 408 819 1635
512 1024 2048 4086
#5:  VECTOR(p(k), k, 1, 21, 4] =
3277 6553 13107 26215
8192 16384 32768 65536
52429 104857 208715 416431
131072 262144 524285 1048576
838861 1677721 3355443 6710887
2097152 4194304 B3BB608 16777216

We can see the table of the first 24 different fractions appearing in the sequence;

| started from the very beginning:



. . - s d . .
Then I came back to the original sequences of the 1™ and 2™ components. My consideration was that

both components are created in the same way, then [ could stick to only one of them and 1 chose the x-

coordinate. Function pts(n) returns the first » first coordinates of the sequence of points.

&4 pts[40y’
L 1 1 1 3 3 T 3 13 13 25 13 51 51 103 51
noD1 0 —_ e = = - = = -
2 B & 16 & e iz (=] iz 128 128 256 128
. 1 1 1 1 3 3 ¥ 3 13 13 25 13 51 51 103 51 205
=R R === == R = R e R e =
205 205 405 205 219 215 1535 8215 1277 3277 G553 EYrr 13107
E E 1024 E 2048 2044 4056 2048 &197 &192 16584 &157 ACTRE
205 409 205 815 Blg 1639 faake] 277 A277 5553 2277 121407 13107
E 1024 E 2048 2048 096 2048 BleZ &9z 16384 92 32768 32758
13107 26215 13107 52429 L2429 104857 52429
32768 65536 32768 131072 131072 2a2144 121072
26215 13107 52429 52429 104857 L2479 209715
(5535 32768 131072 131472 2627044 131072 C24288

| prepared a tool:

[ wanted to address each single element of the sequence, used the formulae p(k) from above and took

in account the fact that it is better to consider packages of eight elements in a row instead of only four.

elln) =
Ifn<4
[0. 0. 1., OQun
If MODCn, &8 =5 v MOD(n, 8) = 6 v

(p(4-FLCOR((n + 3)/8) = 31

MODCn,

8) =0

#5: IF MODCN, 8) = 1 v MODCn, 8) = 2 v MoD(n, &) = 4
(p(4-FLOORC(N + 3)/8) — 37013
If MoDin, 8) =
(4 -FLOORCCN + 3)/8) = 30012
(p(4-FLOORCCn + 3)/8) = 30014
#7:  WECTOR(Ce1(ky, k, 413
i 1 1 1 3 3 7 ¥ 13 13 25 1= 51 51 103
#3: I T T e, . e . . .
2 2 4 2z 8 8 18 8§ 32 3z 81 32 128 128 256
51 205 205 409 205 819 219 1635 &9 3277 3277 5553
128 ' 517 ' 512 ' 1024 ' 512 ' 2048 ' 2048 I 4085 ' 2048 ' 8152 I 8142 ' 165384 '
3777 13107 13107 26215 13107 52429 52429 104857 52429 209715
8152 32768 32768 E5536 32768 131072 131072 262144 131072 524288

Compare with the first row of #5 from above.



Generalization of the problem

For keeping the procedure more general | introduce the matrix ini which is matrix defined by points
#2 and #3; the first point is the origin by default.

ptss(n, 1n1, pt, m = 1/2) :=

Prog
pt = APPENDCLLO, 011, 1n12
ke = 4
#G: Loop
If k = n
RETURN pt

pr = APPENDCpt, [n-CptyCk = 32 + ptyCke = 22000
kit 1

As the first and second coordinates are following the same rule. it is sufficient to investigate only one
of them. I am choosing the x-coordinates.

Let it keep as general as possible (m = 2 by default):

M Y
1 1
ptss| 41, !
#10: Xy
2 2
1
% %+ K 2%+ % %+ 2ex 4z o+ 3ax Falx o+ w0 Brx  + Tex
1 2 1 Z 1 2 1 Z2 1L 2 1 2 1
#11: 0, x, x5, —, f f f f , '
1 Z 2 2z 4 4 & & 16
Ty 4 Bax 1Z2:% 4+ 13y 13.0% 4+ % 1 263 4+ 25.% 25 4+ ZRay 52:% 4 5la.x
2 1 2 1 2 1 2 1 2 1 2 1
6 2 ' 32 ' 64 ' 64 ' 128 '
C1{x o+ x ) 102.% + 103.x 103.x + 102-x 204+ 205.% 205.0% + % ) 4L0x  + 409.x%
2 L 2 1 2 1 2 1 2 L 2 1
128 256 ' 256 ' 512 ' 512 ' 1024
40%:x  + 410.x EZ0wx  + 8192 B9z + x ] 1638:x  + 16835 163%9%:x  + 1638.x
Z 1 2 1 é 1 2 1 Z 1
1024 I 2043 I 2045 I 40565 I 405/ I
3276w+ 327Fu Ev Y (| 6554. 4+ B553.x B553.w 4+ BEEd.x 13108.¢ 4+ 12107.x
2 1 2 1 2 1 2 1 2 1
8192 ' 8192 ' 16384 ' 16284 ' 32768 '
13107 (% + =% 3 26214+ 26215.% 26215+ 26214.% S2428x  + T2429.x S2429 (% + w0
2 1 2 1 2 1 2 1 2 1

32706 63536 83536 1310v2 1z10%2



For me it is important to double check the single steps of the procedure:

Substituting [0.1] for x = [x1.x2] results in the coefficients of x2 which is the list of the Ist coordinates
of the points:
1 1 1+ 1 3 3 7 3 13 13 25 13 &1 &1 103 51 205

#2000, = - — = = — — — — — — — \ , . . .
2 2 4 2 & 2 15 & £ 32 Bd iz 128 128 ) 128 512

205 409 205 &19 fank:] 1639 &81%9 3277 3277 6553 32V7 13107 13107

512 1024 512 2048 2048 4086 2048 8192 8192 16384 8LS2 32768 32768

26215 13107 52429 52429 104857 52425 205715

i i i i
65536 22768 131072 131072 252144 131072 524288

I substitute [1,0] for x = [x1,x2] for obtaining the coefficients of x1 (= 2nd coordinates of the points):

L 1 1 1 3 3 7 3 13 13 5 13 51 51 103 51 205

2 2 4 2 & & 16 & 32 32 64 32 128 128 256 1286 512
205 409 208 @9 &9 163 &ls 3277 297 6553 32yy 1307 13107

§12 | 1024 £12 | 2048 2048 4066 2048 £192  &152 16384 8162 3276E 32768

267215 13107 52459 52429 104857 52429 209715 209715 }

B5535  327B& 171072 131077 J67144 131072 524258 524788

These are the coefficients of x; and x, respectively:

#14: x2_p(n) = el(n)

el(n + 1)

#15: x1_p(n) :

[ split the fractions mto therr summands try to proof the pattern of the
coefficients by mduction.

Assuime that the rule 1s valid until element x1_p(7z) with mod(72,8) = 0;,
we would lilce to find element x1_p(n+1) by

172 ¥(x1 p(t+1-3)y+x1 p(n+1-2)) = 172%x1 p(n-2+x1 p@-1)).
Then x1_p(r2-2) with mod(7-2,8) = 6 and x1_p(rz-1) with

mod(r-1,8) = 7 will - hopetully - give x1_p(n+1) with
mod(n+1,8)= 1.

. - -~ >
First of all T checl for » = 40: #16.  ¥1_p(an) = 209715
524288
1
#17 xl_p(al) = — (x1_p(38) + x1_p(29))

ra

209715 209715
£18 —
524238 524285




| copied function el(n) because 1 am needing the subexpressions for the different cases of mod(#n.8).

al1{n} =
Ifnx<4

[0, 0, 1, 0lun

& v MODCn, 8) = O

It MoDin, &) = &) = 2 v MODin, &) = 4
Cpl4 FLOOREn + 33/8) — 33013
If MOD(n, &) = 7
{p(a.FLOORn + 33/8) — 33),.2
(p(4FLOOR{Cn + 3)/8) - 310,14

#19:

Then x1 p(n-2): (mod(n,8) = 6)

|

n4+ 2
sussT| | pf4.FLoOR ~afl . n -2
#20: &
1
3 - 4.FLOOR(N/E + 1/8)
2.2
#21: + —
5 5
3 — 4 FLOOR(N/& + 178)
Z .2 2 1 13 208 3277 52425 838861
#22:  VECTOR +—, n & 48, 8= |— —, : : :
5 5 2 32 512 slg2 131072 2097152
Expression #22 are elements #6, 14, 22, 30,
xl p(n-1) (mod(n.8)=7)
n+3
SUBST] | p| 4+FLOOR -3 cnon=-1
#23 8
p)
2 - 4 FLOORCNSS + 1./4)
2 2 32
#24 — -
5 5
2 - 4.FLODR{n/& + 1/4)
z 2 3.2 1 25 409 6553 10487 1677721
#25.  VECTOR| — - . n, 8 48 8|=|— —, : : :
5 5 4 54 1024 15384 267144 4194304
Expression #25 are elements #7, 15, 23, 31,
This is - should be - the next element in the sequence x1 p(n+1): (mod(n.8) = 1)
n+ 3
SUBST| | p| 4. FLODR Y
26 a
3
1 — 4.FLODRCNn/& + 1/2)
2 2.2
021 — -
5 5
1 - 4.FLOOR(n/& + 1/2)
z I 3 51 &9 13107 209715 3355443
#2686 VECTOR| — - L oh & 48 B = | —, , , , .
5 5 & 128 2048  I27EE 524288 5288508

|



The next check holds:

1677721

1 ﬂ 1 13 205 277 52479 838801 :| { 1 25 409 f353 104857
#20. —. 4
2 2 32 512 &l92 131072 2097152

|: E) 51 &19 131407 209715 3355443 :|
#30

&8 128 2048 32768 524288 3388608

Now follows the interesting step: 1/2%(#21 +#24) = #27 7?

3 - 4. FLOORCn/& + 1/8) 2 — 4+FLOOR{n/& + 1/4)

1 P 2 2 2 132
#31: —. + — + | — -

2 5 5 5 5

2 — 4 FLOORCN/& + 1/8) 1 — 4 FLOORCA/8 + 1740

22 2 3.2 2

#32. - + —
5 5 5

4 54 1024 15384 267144

4154304

|

DERIVE does not simplify further because it has no information about the nature of #1.

But we have: 1 iz divigible by 8 (mod(2.8) = 0).

We know that: for all »z with mod(2.8) = 0: floor(x8 + 1/8) =floor(xn/8 + 1/4) = n/
2 - 4.(nf8) 1 - 4. {nf&)
2.2 2 3.2 2
#33- _ P
5 5 5
(2 - nf2
2 2
#34: — -
5 5

We can do that with the CAS, too:

3 — 4.FLOOR(N/& + 1/8) 2 — 4FLOORCN/& + 174D
1 2.2 2 2 2 :3.2
— + — + —_— -
2 N 5 5 5 5
3 — 4 FLOORCEn_f8 + 1/8) 2 - 4 FLOORCE n_f8 + 1/4)
1 22 2 2 2 3.2
. + — +|— -
2 L 5 5 5 5
2 — 4.FLOOR{n_ + 1/8) 1 — 4.FLOOR{n_ + 1/43
2.2 2 3.2 2
- EA—
5 5 5

n_ < Integer {0, =)

1 -4.r_
2 2
5 5
1 - 4:(nf8)

8.



1 - 4.FLODR(n/& + 1/2)
2.2

2
#27. — -
L e TP 5
We “simplify” expression #27 in the same way:

The last steps are easy work:

1 - 4.FLOORCH/8 + 17420

2
#325 — -
5

2
#36:  — -
5

2
#37 — -
5 5

#34 = #37, which was to be proofed.

We can repeat the procedure for all cases and proot show the identities of

xl p(n+1)y=1/2(x] p(n-2)+x1 p(n-1)) for all positions of n within a package of 8§ in a row.

It is obvious that for the second part of the x-value = x2 p(n) the proof will also hold.

What we also can see is the fact that the full x-value will be 2/5-x1 + 2/5-x2 + fl1(n)x1 + f2(n)x2
where fl and 2 are functions with 2”n in the denominator. The same is happening with the y-values.
Calculating the limits, the functions are tending to 0 and the limit of the sequence of points with
[x0.v0] = [0.0] will end in [2/5-(x1+x2). 2/5-(v 1+y2)].

See an example: Initial points are [0,0]. [5,-4] and [11.9].

If my idea will hold then the sequence should end in [2/5:(5+11), 2/5:(-4+9)] = [6.4. 21

6.4 2
5 -4
ptss| 100, 6.4 2
#47: 11 9
[g5, ..., 1lo0] /.4 2
#48;
G.4 2
6.4 2
L 6.4 2

I introduce a more general function including a variable (matrix) for the initial points:

Initial points are [-3. 5]. [5. ~4] and [1 1, 9]. What is the convergence point now, if there is one?
-3 5
ptsG(100, | 5 -4
#53:
19

100



[ 204069358115225 1688849860263931 ]
#54: '
35184372088832 562949953421312

#55:  [ENCHEER

Can you find out the rule?

[0.4-:: + 0.4x +0.2:x , 0.4y + 0.4y + 0.2:¥ ]
3 2 1

#60 3 2 1 2

Proof this!!

What happens if m # 0.5?

3 g -3 5
ptsG) 10000, 5 -4 |, 0,51
. ptsG| 10000, 5 -4 |, 0.49 £71
’ 1 9

35
#7 2 [1.4?3?51?92-10

Conjectures?? Proofit!!

So What Was The Role Of The CAS?

©® Although the DNL #22 Article said that it was finding a limit, it really only
gave our intuition a “nudge.”

® Toreally know that (0.4, 0.4) is the limit, a proof was required. The CAS can
not construct a proof. There is no button to push.

©® This is where a “partnership” develops. The student, and instructor, have to
understand what it is that the CAS and other technologies can do to help with
the reasoning process.

® Visualization is a powerful aid. Sometimes it takes the form of graphical
displays, other times it may be just to generate a large number of terms or
examples, or, as it this case it was to give a display that made certain patterns
“stick out.”

© Asinstructors, we need to “let a thousand flowers bloom”, i.e. let our students
try their own strategies and exercise the limits of the CAS and other
technologies. Our role is to gently critique and offer guidance through
suggestions. In this case, a real strategy did not emerge until it became clear
that the denominators were powers of 2. Everything else emerged from this
very simple observation.

“]
, F.B0e403¥ 27,10



Postlude

The original article was from DERIVE Newsletter #22. Riidiger Baumann sent a short note for
DERIVE Newsletter pointing to the fact that little generalization leads to Edward Sawada’s
“*Misguided Missile™ contribution (also from DNL#22).

Here Is What Riidiger Saw

Riidiger recommended the ITERATES-procedure because the recursive procedure is too slow.

#85: pts_baum(r, s, ini, n) := ITERATES([b, c, r-a + s-bJ, [a, b, c], N7, n)
This is the "Leinhach-Brubaker Sequence";
0 0

#86: pts_baum/ 0.5, 0.5, 0 1 |, 50

1 0
And this is Edward’s Missile:
0 0
1 NE] \\
#87: pts_baum| 0.9, 0.1, — , 50 ‘\
2 2 / \
1 0 N \\
1\‘_

( 007 g
#89: pts_baum|0.15, 0.9, | 0 2 |, 50

“ 2 0 4

s 0 0 At

#90: pts_baum| 0.05, 0.9, 0 2 | 50

\ L 2 0 J

#89 red and #90 blue




A Twin

0 3 30
pts_baumn 0.02, 0.9, 1 1 |, 80|, pts_baum| 0.02, 0.9, o 3 |, 80

30 11

Why not trying to introduce sliders for the parameters r and s and investigate their influence on the
sequence of points?

Conics?

Proof this!

If you find another (better) proof, then please write to

leinbach@gettysburg.edu and/or nojo.bochm@pgv.at




