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ABSTRACT 

 

 
Mathematics can still be taught without using a CAS and this is probably the case in most schools and 

universities. Although CAS and technology are often used by instructors to demonstrate or illustrate 

mathematical concepts, they are rarely used by students. When we consider our mathematics curriculum, 

“Differential Equations” is one course that we firmly believe can and should benefit from the use of CAS.  In 

this talk, we will report how our ODE course has evolved, as our engineering students have access to technology 

(Voyage 200 symbolic calculator) in the classroom at all times.  This talk will show examples of what students 

still do by hand and what CAS allows us to do now to enrich the learning experience. 

 

We will consider the series solutions of a second order equation with variable coefficients and numerical 

solution of the first order equivalent system.  Many textbooks do not show the relation between these two 

subjects.  With a CAS on every desk, we can ask students to compare results obtained with both methods. Of 

course, technology is a must to support this.  As teachers, we still want our students to be able to do some 

specific computations manually. For example, they have to find the recurrence formula by hand for the 

coefficients of the series solution.  However, we also want students to be able to compute, with some accuracy, 

the value of the solution at a certain point using partial sums or even graph this approximate solution.  Then, 

converting the same equation into a first order system, they can plot the numerical generated curve obtained by 

the built-in RK method in the Voyage 200 or create a table of values for the approximate solution. 
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1. Introduction 

 Let us say a word about the idea behind this paper.  Once someone has decided to use computer algebra 

in his teaching, he has to decide for what particular topics he will use it and when it is appropriate to do so. We 

know that computer algebra helps a lot in calculus and differential equations, but not so much in mathematical 

analysis, for example.  Many colleagues or instructors continue to think that computer algebra is mainly useful 

for doing applications, not also for teaching mathematical concepts.  In this paper, we want to show that the 

Voyage 200 symbolic calculator can be used in a very original way to solve numerically second order linear 

differential equations.  We will explore the precision of results obtained with the “Power series” method and 

compare with values from a “Runge-Kutta” algorithm implemented on the Voyage 200. We will be using 2 out 

of 6 graphing windows of the device:  the Diff Equations and the Sequence graphing modes. We will present an 

approach where pencil and paper techniques are still required but where technology completes the analysis.   

2. Power series solutions using technology: more can be done 

 
 At ETS, the Voyage 200 calculator has been used since September 1999 but questions about solving 

ODEs using power series are usually formulated in the same way, year after year.  Let’s look at the classic 

approach for this topic.  Students are given a differential equation of the following type: 

0 0'' ( ) ' ( ) 0,    (0)( ) , (0) .y q x y r x y y yp x y v+ + = = ′ =
 

In fact, the initial conditions are sometimes defined elsewhere than at 0, at 0x x=  for example, but a simple 

change of variables (
0v x x= − ) will revert the problem to this general case.  The functions 

( ) ( )
 and 

( ) ( )

q x r x

p x p x
  

are supposed to be analytic at 0 and p(0) ≠ 0 (said otherwise, 0 is an ordinary point of the differential equation).  

Then students are told, without proof, that there exists a general solution of the problem by mean of power 

series:  

    
0 0 1 0

0

( )    with    and .
n

n

n

y x c x c y c v
∞

=

= = =∑  

This series converge for │x│< R where R is at least equal to the distance between 0 and the nearest 

singularities (if we suppose that p, q and r have no common factors, the nearest singularity is a complex point a 

which is the closest to 0 and satisfying  p(a) = 0).  Students have to find a recurrence formula in order to 

compute recursively the coefficients of the series.  This is done by hand.  Having found many coefficients, they 

can use them to get an approximation value of y(α) with α between −R and R.  The problem is that we never ask 

them how accurate is this approximation!  In fact, they usually only have to estimate y(α) using no more than the 

5 first non vanishing terms…  This paper wants to reverse this approach.  We will show how this subject can be 

enriched with the aid of technology.  Moreover, because Voyage 200 “desolve” command does not possess, like 
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big CAS running on computers, a “power series method”, this “disadvantage” can become an advantage.  A 

good mix of paper and pencil techniques and, also, a use of RK numerical method for first order systems can be 

used and give a nice solution of the problem.  Let us be more concise, using an example.
 

 

3. Concrete examples 

 
 If we want to show what we are doing exactly in the classroom, the best way will be to give concrete 

examples.  Let us take the following problems: 

( )21: 4 3 4 0, (0) 4, (0) 1.eq x y xy y y y′′ ′ ′+ + − = = =  

2 : (2 9) 4 0, (0) 8, (0) 2.eq x y y xy y y′′ ′ ′− − − = = = −  

For each of them, students are asked to find a series solutions centered at 0 and use it to estimate the value of 

y(α) where α belongs to the interval of convergence.  In fact, for eq1, we note that there are singularities located 

at x = ± 2i, so the series ( )0 1

0

4, 1
n

n

n

c x c c
∞

=

= =∑  will certainly converge for 2x < .  We will take α = 1 in this 

case.   For eq2, the only singularity is at 9/2, so the series ( )0 1

0

8, 2
n

n

n

c x c c
∞

=

= = −∑  will converge for 9 2.x <   

We will take α = 2 in this case.  One can estimate y(α) by using a partial sum of the form 
0

n

k

k

c
=

∑ for different 

values of n.   

 

An important question is:  how many terms are needed in order to be confident for the value of y(α)?  

What if we only use the first 5 non vanishing terms of the series?  At ETS, every student in the classroom has his 

own Voyage 200 on his desk.  They know that the pencil and paper ability required to find the recurrence 

formula is still important.  After recalling some properties of power series ─ namely that term by term 

differentiation is allowed within the interval of convergence ─, they will set n

n

n

y c x
∈

=∑
Z

 instead 
0

n

n

n

y c x
∞

=

=∑  of 

because we can simply decide that 0nc =  when  n < 0.  This way, y′  and y′′  will keep the same indices, we can 

even omit these indices recalling that all summations are on n∈Z  (we first saw this approach in [1] in the 80’s). 

Substituting n

ny c x=∑  into the differential equation and, collecting similar terms, leads to the recurrence 

formula (because if 
0

0n

n

n

a x
∞

=

=∑  then 0na n= ∀ ). Once it is obtained, they can compute some additional 

coefficients and, then, estimate y(α).  Our students will manually do the substitutions and find the recurrence 

formula. For eq1, this would lead to: 
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( )2Solve    4 3 4 0x y x y y′′ ′+ + − =  

 Using 1 2( 1)n n n
n n ny c x y nc x y n n c x

− −′ ′′= = = −∑ ∑ ∑  

2 2 2 1( 1) 4 ( 1) 3 4 0n n n n
n n n nx n n c x n n c x x nc x c x

− − −− + − + − =∑ ∑ ∑ ∑  

2( 1) 4 ( 1) 3 4 0n n n n
n n n nn n c x n n c x nc x c x

−− + − + + − =∑ ∑ ∑ ∑  

 

Making the change 2n n→ +  in the second summation so that they are all in terms of n
x  

 

2( 1) 4( 2)( 1) 3 4 0n n n n
n n n nn n c x n n c x nc x c x+− + + + + + − =∑ ∑ ∑ ∑  

[ ]2( 1) 4( 2)( 1) (3 4) 0n
n n nn n c n n c n c x+− + + + + − =∑  

Thus 2
2( 3 4) 4( 2)( 1) 0n nn n n c n n c +− + − + + + =  

and the recurrence formula will be 
( )2

2

2 4

4( 2)( 1)
n n

n n
c c

n n
+

− + −
=

+ +
 

 

Since for eq1, (0) 4 and (0) 1y y′= = , using 0,1,2n = …  in this formula gives us the coefficients and 

the solution 2 3 41 1
( ) 4 2

24 6
y x x x x x= + + + − +…  

Using a partial sum with 5 terms gives us an approximation of the solution at x = 1, 
55

(1) 6.875
8

y ≈ =  

But what can be said about the precision of such an estimate? The process of calculating more terms, 

manually, to get more precision is quite tedious. Here is where technology can help. We show students that their 

Voyage 200 has a “sequence” graphing mode that can be used in order to generate as many coefficients as they 

need.  Furthermore, the adaptive built-in RK method can find numerically the value of y(α) if the user has 

transformed the second order ODE into a first order system.  So, when comes time to teach power series 

solutions to our students, we can do a better job if we decide to make use of technology.   

 

We summarize in the following table the changes that have occurred for both of us for the past few 

years.  We moved from questions a), b) and c) on the left to questions a), b), c) and d) on the right.   
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 No  technology involved  Voyage 200 involved 

a) Use a power series 

representation and find the 

recurrence formula.   

a) Use a power series  

representation and find the  

recurrence formula.  

b) Find the interval of convergence 

of the series. 

b) Find the interval of convergence  

of the series. 

c) Estimate the value of y(α) by  

using the 5 first non vanishing 

terms. 

 

 

c) Find the value of y(α) by 

using as much terms as you 

need. 

Define the partial sum 

0

( ) (  fixed)
n

k

k

k

c s nα α
=

→∑     

and compute the value of y(α) with 2 

“stable” decimals. 

d) When the value of y(α) has 

become “stable”, make a second 

check using RK method. 

By converting the second order ODE 

into a first order system and using the 

DE graphing mode window. 

 

Figure 1  Table showing the way questions are given to the students for power series solutions of ODEs 

 

 

Here are summarized the results to some of the former questions for both problems: 

 

eq1 (α = 1) eq2 (α = 2)

 

( )
0 1

2

2

a)  c 4, 1,

2 4
( 0).

4( 1)( 2)
n n

c

n n
c c n

n n
+

= =

+ −
= − ≥

+ +
 

( )
0 1

2

2

1

a)  c 8, 2,

2 3 4
( 1).

9 ( 1)

n n

n

c

n n c c
c n

n n

−

+

= = −

− −
= ≥

+
 

c) y(1) = 6.88  (first 5 non vanishing terms).   

 

when using more terms, the answer 

seems to stabilize to 6.89.  

 

c) y(2) = 0.14  (first 5 non vanishing terms).   

 

when using more terms, the answer 

seems to stabilize to 0.84. 

 

 

Figure 2 Results for our two ODEs   

 

 

Figure 2 indicates that if we only use the 5 first non vanishing terms, the value of y(1) will be a good 

estimate in the case of eq1 while the value of y(2) will be very bad in the case of eq2.  With technology, this can 

be easily corrected.  Because of the poor estimate (0.14) obtained in eq2, we will show how Voyage 200 can 

help for this equation.   
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First, the Y Editor of the Voyage 200, in sequence graphing mode, requires a sequence defined in the 

form of “u1(n) =” (see figure 3 a).  This means that the students have to rewrite the recurrence formula using the 

change 1n n→ − , thus obtaining 

( ) ( )2 2

1 3 1 32( 1) 3( 1) 4 2 7 5 4
.

9( 1) 9 ( 1)

n n n n

n

n n c c n n c c
c

n n n n

− − − −− − − − − + −
= =

− −  

In Voyage 200, initial values should be given in reverse order (see figure 3 a) and, in this particular case 

where the recurrence formula is of order 3, we need to compute by hand the value of 2.c
  

Recalling that 0nc = when n < 0, we find
 

( )2

2

2 2 7 2 5 ( 2) 4 (0) 2 1
.

9 2 1 18 9
c

⋅ − ⋅ + ⋅ − − ⋅
= = =

⋅ ⋅  

   

                

        (a)       (b) 

Figure 3  Voyage 200 Y Editor in “sequence” graphic mode (a) and (b) showing a table of values. 

 

The coefficients of the series solution are now available through this special function 1( )u n , as can be 

seen in figure 3 b.  Partial sums for finding a stable value for y(2) are now computed: 

 

 

Figure 4  Function definition and evaluation 

 

Figure 4 shows us that an appropriate 2 decimal value for y(2) should be 0.84.  Using only the first 5 non 

vanishing terms (that is s(4) because 
0 1 4, , ,c c c…  are all different from 0), we would conclude that y(2) = 

0.137174...   
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Another way of generating a partial sum for the series solution, without using the graphic environment, 

is to use the “when( ,  ,  )” command which is equivalent to a “if   then   else   “ instruction. Let’s create a 

conditional function ( )a n  giving us, for 0,1, 2, 3n = �  the desired coefficients. For the above example, the 

function must give us a value of 0 if 0n < , 8 if 0n = , 2−  if 1n =  and  
( )2

1 3
2 7 5 4

9 ( 1)

n n
n n a a

n n

− −
− + −

−
 if 

2, 3, 4, 5n = � . Figure 5 a below shows such a function created using four cascading when commands. 

 

          

       (a)        (b) 

Figure 5  A function to generate the coefficients, and the partial sum of the series solution. 

 

Looking at figure 5 b, we see one advantage of this approach. The coefficients are in exact mode instead 

of floating point values as in figure 3 b. On the other hand this approach is much slower if we need to calculate 

more precision since evaluating ( )a n  requires recursion back to 0 for each coefficient instead of relying on 

previous value already calculated as with our previous 1( )u n function. But the user will get the same values as 

those obtained using the “sequence” graphic mode (see figure 6). 

 

 

Figure 6  Estimating (2)y  with the ( )a n  function. 

 

The Voyage 200 possesses also a robust adaptive RK method [2], so students can do the same problem a 

second time, using another method!  This is often not seen in a Differential Equations course. The Runge-Kutta 

methods are usually shown for first order ODE’s. To solve a second order equation we need to show students 

how to transform this equation in a set of first order equations. Of course, once this is done, the CAS calculator 

will do all the computing though students have to learn how to control the environment. 
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First, let’s look at converting a second order ODE into a system of first order ODE. Every second order 

equation which can be re-written in the form ( , , )y F x y y′′ ′=  can be transformed in a canonical way in a system 

of first order equations. In figure 7 b, we see that the independent variable must be t instead of x. Furthermore, 

the dependant variables must be y1, y2, y3,… In fact, this graphic mode is designed to solve system of first order 

differential equations.  

 

          

       (a)        (b) 

Figure 7  The “differential equations” graphing mode 

 

Recalling that eq2 is 2 : (2 9) 4 0, (0) 8, (0) 2.eq x y y xy y y′′ ′ ′− − − = = = − , we set x t= , then 

1y y=  and 1 2y y y′ ′= = , we can convert the second order ODE eq2 into a first order ODE system syst_eq2: 

1 2     
1(0) 8

_ 2 : 4 1 2
2(0) 22

2 9

y y
y

syst eq ty y
yy

t

′ =
=

+
′ = −= −

 

 
We enter these values in the Voyage 200 DE graphing mode (see figure 8 a). One can notice the 

particular way the initial conditions are entered ( 0 0t =  and 1 8yi =  for 1(0) 8y = ).  In figure 5 we see that we 

have chosen a graph window with x or t-axis going from  −1 to 5 and the y-axis going from –5 to 10.  

 

          

       (a)        (b) 

Figure 8  Preparing to estimate y(2) using RK method for syst_eq2 
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The step for this example will be 0.1 though this being an adaptive step implementation of  a Runge-

Kutta method the step could be smaller to ensure that the global error will not exceed a value of diftol = 0.001 

when going from t0 = 0 to tmax = 5. In the F1 menu, one must also set the “Fields” option to “FLDOFF” to 

prevent the calculator from trying to plot a slope field, option we use when studying with them graphical 

solution of first order equations. Figure 9 shows the curve computed with this method and a table of values 

generated. 

 

          

       (a)        (b) 

Figure 9  Solution and table of values obtained using RK method for syst_eq2 

 

The value 0.83787 was obtained using a step size of 0.1 with a tolerance of 0.001.  Changing the 

tolerance to 0.0001 would provide y(2) = 0.83991.  We can be confident with the value 0.84.  Note also that the 

graph “stops” at x = 4.5 even though we asked to plot a solution up to t = 5! This method being adaptive and 

wanting to ensure a global tolerance, the calculator isn’t capable of calculating a sufficiently small step, thus 

stopping calculations at the singularity of this equation which is 9/2. Cool! 

  

4. Conclusion 

 
 This approach ─ using a mix of paper and pencil and technology ─ has many advantages.  One among 

them is the fact that students are able to “discover” their CAS calculator when they have to do this kind of 

problem using 2 different graphic windows.  We have to admit that the RK method is only used to check the 

results obtained by the power series method:  we don’t study RK in details (only Euler) but this can be done in a 

separated numerical analysis course.  Another advantage of using the sequence graphing mode is contained in 

the following remark:  students attending this ODE course had followed, earlier, a calculus course where they 

studied infinite series and convergence.  This is a nice topic where we can talk again of these results. They know 

that if a series of real numbers 
0

n

n

a
∞

=

∑  converge, then we must have lim 0.
n

n
a

→∞
=  The table of values in figure 3b) 

shows this but, in order to evaluate a series solution of an ODE at some point,  “how long will it take” if we want 

to be confident with a partial sum?  Experimenting with the CAS Voyage 200 gave us a satisfying answer. 
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Some authors, especially in Applied Differential Equations, will mention that efficient numerical 

approximation methods and access to computer and more powerful calculators could question the need for 

power series method in a first course in differential equations, in particular for solutions about a regular point. 

Some of them will even omit this subject [3]. We still think it’s a good idea to link all these mathematic topics 

together and of course, a partial sum of a series solution (a polynomial) is still a great object to manipulate 

algebraically. 
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 Also, in the writing of this article, we took a look at some exams or exercises given by our colleagues to 

their students.  Special thanks to our colleague Chantal Trottier.  

 
 


