DYNAMIC APPLETS FOR DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS (CREATE YOUR OWN EASILY!)

> Robert Decker University of Hartford, USA <u>rdecker@hartford.edu</u> uhaweb.hartford.edu/rdecker

Background

- Non java applets (still available at my website).
 Run as stand-alone programs.
- Collaboration with students (Victor Sklutovsky, Tim Andrews, Andrew August) to create java applets – can imbed in web page, add text, project instructions.
- Go to uhaweb.hartford.edu/rdecker /javaMathlets.html for instructions on creating your own applets and running already created ones

Purpose of applets (mathlets)

- Get students to make connections, discover new properties, see solutions from different points of view (must be dynamic/interactive).
- Can be used as tool for doing homework.
- Demonstrate during lecture.
- Provide method to deliver projects (text and applets together).

Capabilities of applets

- Plot more than one coordinate system at a time (make connections, multiple representations)
- Plot functions, parametric functions, first order differential equations, differential equations systems, iterate maps and systems of maps, iterated function systems, bifurcation diagrams for iterated maps (and more) together.
- Interactive initial conditions for differential equations.
- Parameters and sliders (can be animated).

Creation of new applets

- Eclipse (makes debugging easier), but could use any text editor.
- Make changes in one file.
- Specify functions (differential equations, etc.), coordinate systems, parameters, and which functions are plotted on which coordinate systems (and how).
- Create .htm file.
- Enhance .htm file with text, graphics, etc.
- Post to website.

Your first applet

- Create an applet that shows that the derivative of a function has zeros at the same x-values for which the original function has a max or min.
- Use at least one parameter in the original function so that you can demonstrate that the relationship is independent of the parameter value.
- Add some text, giving the user of the applet some information about what they are seeing.
- See my applet f.htm on my website. How did I create the vertical lines?

Case study: A highly damped pendulum (applet Pendulum)

- An equation for a damped pendulum is $x'' + cx' + k \sin(x) = 0$ It can be rewritten in system form as x' = y, $y' = -cy - k \sin(x)$
- Investigate this equation for various values of the damping constant *c*. You may set the constant *k*=1.
- Explain your phase portraits in terms of the pendulum.
- What do you see when *c* gets large? Drag your initial condition around to see what is happening.

Case study: Euler versus Rk2 versus Rk4 (applet EulerRk2)

- Investigate $\frac{dy}{dx} = ay(1-y)$ using Euler, Rk2, and Rk4
- Fix the step size at 1 (too large practically speaking)
- Increase the parameter *a* continuously and observe/explain what is happening
- Results obtained by one of my students (using computer algebra after making conjectures based on the graphs)

Case study: Gone fishing (applet LogisticDE)

- Investigate $\frac{dy}{dx} = 0.5y(1-y) d$ which can be used to model the number of fish in a lake with initial population growth rate *a* and fishing rate *d*.
- Explain what is happening for *d*=0 using many well-chosen solution curves.
- Increase the parameter *d* continuously and observe/explain what is happening
- Find the *d* value beyond which no fish can survive in the long term (called the bifurcation value).
 Explain how you came up with your answer.

THANKS! (GO GET SOME JAVA)

Robert Decker University of Hartford, USA <u>rdecker@hartford.edu</u> uhaweb.hartford.edu/rdecker