

An example of learning based on competencies: Use of Maxima in Linear Algebra for Engineers

ANA MARÍA DÍAZ ALFONSA GARCÍA AGUSTÍN DE LA VILLA

adiaz@ind.uned.es alfonsa.garcia@eui.upm.es avilla@upcomillas.es

COME TO MALAGA ON TIME 2010

Technology and its Integration into Mathematics Education. TIME 2010

11/07/2010

Adaptation to EAHE

New attitude of teachers and students
New methodology
New material
New model of assessment
Long-life learning
E , b and u-learning

Learning based on competencies

To be a good engineer

METACOMPETENCY

integrated into society

Maths contribution

The ability to apply the mathematical techniques to solve engineering problems

11/07/2010

Linear Algebra for engineers

- Our reference course: Open University in Spain (UNED) in 2009-2010 for the new grade in Computer Engineering
- A proposal of Linear Algebra course in elearning model, with an integrated use of a CAS (for solving problems, calculations, etc.)
 Tutorials can be provided

Generic Competencies

♦ G1: Self Learning ♦ G2: Analysis and synthesis ♦ G3: Planning and organization ♦ G4: Communication and writing ♦ G5: Mathematical and technical writing \diamond G6: Use of technology ♦ G7: Information Management ♦ G8: Critical Thinking For every math

subject

Specific Competencies (in Linear Algebra)

 S1: Knowledge, understanding and use the basic concepts in Linear Algebra

 S2: Ability to apply knowledge, calculation and technology to solve mathematical problems for engineering

11/07/2010

Assessment of Competencies

For each competency several measurable indicators will be defined
 Proper use of CAS is one of the indicators G6: Use of technology
 Using the CAS also other competencies are developed

Choosing the CAS

In our e-learnig model we propose free software, which offers:

 Freedom to use it anywhere and for any purpose
 Freedom to study and adapt it to our needs

 Freedom to distribute it to students, which working at home

Essential requirements

Easy of use

 Symbolic, numerical and graphical linear algebra features
 Accessibility and ease of installation
 Good maintenance
 Wide diffusion

The CAS wxmaxima

Maxima has interesting features in Linear Algebra It is very easy to use and, being freely distributed, students can access it easily and have plenty of information

Material

Textbook
Study guide
Worksheets
Projects

Maxima files
 On line self-assessment tests
 Worksheets

11/07/2010

Use of wxmaxima

Software integrated into the course
 Students can use it in different ways:
 To check calculations (early stage of learning)
 To carry out routine mathematical procedures
 To solve problems

Developing competencies by solving problems with Maxima

An example

- A surveillance device has access to images from security CCTV that focuses on the four sides of a building.
- ◆ The device is programmed in such a way that only shows one of the sides. After showing the same side for one minute it may "choose" to maintain the same image, with probability a (0≤ a ≤ 1) or may access one of the two adjacent sides of the building, with equal probability ((1- a)/2). The security guard controlling the device introduces the value of a, as a data.

 i) Which value of a should be introduced to display the same side constantly? (or to change always the controlled side?)

An example (2)

- ii) At 8:00 a.m the device displays the Nord side. The guard introduces the value a = 1/2. Find the probability of showing each of the sides at 9 a.m. Analyze the same problem with different values of parameter a. Pay special attention to the cases a =0 and a =1.
- iii) Study, for different values of the parameter a, the behavior of the device when n minutes have passed, with n very large.

Step 1: Modelling

 Analyzing the statement Identifying data and objectives Defining variables Choosing notation Looking for similar examples in references Proposing and validating the model

G2: Analysis and synthesis

G4:Comunication and writing G5: Mathematical writing

Output of step 1 in our example

From real world to Mathematical word

V(n): Vector, after n minutes of probabilities for staying in N-E-S-W

 $V(n+1)=M\cdot V(n)$,

$$M = \begin{pmatrix} a & \frac{1-a}{2} & 0 & \frac{1-a}{2} \\ \frac{1-a}{2} & a & \frac{1-a}{2} & 0 \\ 0 & \frac{1-a}{2} & a & \frac{1-a}{2} \\ \frac{1-a}{2} & 0 & \frac{1-a}{2} & a \end{pmatrix}$$

Mathematical problem: Computing *Mⁿ* for different values of *a* and *n*

11/07/2010

Step 2: Selecting concepts to be used

Matrix power

Diagonalization

G3: Planning and organization G5: Mathematical writing

Eigenvalues and eigenvectors
Similarity Matrix (P)
Inverse Matrix
Properties

S1: Knowledge, understanding and use the principles of basic training in Linear Algebra

11/07/2010

Step 5: Application's conditions and other alternatives

Our example (generalization)

- "Repeat" the experiment if you have the same device in a hexagonal building.
- Would it be possible to draw any conclusions for the position limit for a device located in a polygon with h sides?

Homework

Analyze, according the number of sides, the limit position in the case a=0
There is difference between h even or odd?

Conclusions

The use of Maxima in solving problems may enhance several competences
CAS in learning and assessment process:
i) Providing documentation for using
ii) Proposing the development of procedures for solving an algorithmic process
iii) CAS can be used in exams

THANK YOU GRACIAS

COME TO MALAGA ON TIME 2010

Technology and its Integration into Mathematics Education. TIME 2010

11/07/2010