An example of learning based on competencies: Use of Maxima in Linear Algebra for Engineers

ANA MARÍA DÍAZ ALFONSA GARCİA AGUSTÍN DE LA VILLA
adiaz@ind.uned.es
alfonsa.garcia@eui.upm.es
avilla@upcomillas.es

Adaptation to EAHE

- New attitude of teachers and students
- New methodology
- New material

New model of assessment
, Long-life learning
, E, b and u-learning

Learning based on competencies

To be a good engineer
METACOMPETENCY
integrated into society

Maths contribution

The ability to apply the mathematical techniques to solve engineering problems

Linear Algebra for engineers

- Our reference course: Open University in Spain (UNED) in 2009-2010 for the new grade in Computer Engineering
- A proposal of Linear Algebra course in elearning model, with an integrated use of a CAS (for solving problems, calculations, etc.)
- Tutorials can be provided

Generic Competencies

- G1: Self Learning
- G2: Analysis and synthesis

G3: Planning and organization
G4: Communication and writing
, G5: Mathematical and technical writing
G6: Use of technology
, G7: Information Management
, G8: Critical Thinking

Specific Competencies (in Linear Algebra)

- S1: Knowledge, understanding and use the basic concepts in Linear Algebra
, S2: Ability to apply knowledge, calculation and technology to solve mathematical problems for engineering

Assessment of Competencies

- For each competency several measurable indicators will be defined
- Proper use of CAS is one of the indicators G6: Use of technology
Using the CAS also other competencies are developed

Choosing the CAS

In our e-learnig model we propose free software, which offers:

Freedom to use it anywhere and for any purpose
Freedom to study and adapt it to our needs
, Freedom to distribute it to students, which working at home

Essential requirements

Easy of use

- Symbolic, numerical and graphical linear algebra features
Accessibility and ease of installation
Good maintenance
, Wide diffifusion

The CAS wxmaxima

Maxima has interesting features in Linear Algebra
It is very easy to use and, being freely distributed, students can access it easily and have plenty of information

Material

, Textbook
Study guide
Worksheets
Projects

Maxima filles
On line self-assessment tests
Worksheets
Projects

Use of wxmaxima

- Software integrated into the course

Students can use it in different ways:
To check calculations (early stage of learning)
To carry out routine mathematical procedures
To solve problems

Developing competencies by solving problems with Maxima

Before the use:

Training with Maxima

G6:Use of technology

In the process of resolution,

An example

- A surveillance device has access to images from security CCTV that focuses on the four sides of a building.
- The device is programmed in such a way that only shows one of the sides. After showing the same side for one minute it may "choose" to maintain the same image, with probability $a(0 \leq a \leq 1)$ or may access one of the two adjacent sides of the building, with equal probability $((1-a) / 2)$. The security guard controlling the device introduces the value of a, as a clata.
, i) Which value of a should be introduced to display the same side constantly? (or to change always the controlled side?)

An example (2)

- ii) At 8:00 a.m the device displays the Nord side. The guard introduces the value $a=1 / 2$. Find the probability of showing each of the sides at 9 a.m. Analyze the same problem with different values of parameter a. Pay special attention to the cases $a=0$ and $a=1$.
, iiii) Study, for different values of the parameter $a_{,}$ the behavior of the device when n minutes have passed, with n very large.

Step 1: Modellling

- Analyzing the statement
- Identifying data and objectives
Defining variables
Choosing notation

G2: Analysis and synthesis

Looking for similar examples in references
$>$ Proposing and validating the model

Output of step 1 in our example

From real world to Mathematical word
$\mathbf{V}(\mathbf{n})$: Vector, after n minutes of probabilities for staying in N -E-S-W
$\mathbf{V}(\mathrm{n}+1)=M \cdot \mathrm{~V}(\mathrm{n})$,

$$
M=\left(\begin{array}{cccc}
a & \frac{1-a}{2} & 0 & \frac{1-a}{2} \\
\frac{1-a}{2} & a & \frac{1-a}{2} & 0 \\
0 & \frac{1-a}{2} & a & \frac{1-a}{2} \\
\frac{1-a}{2} & 0 & \frac{1-a}{2} & a
\end{array}\right)
$$

Mathematical problem: Computing M^{n} for different values of \boldsymbol{a} and \mathbf{n}

Step 2: Selecting concepts to be used

Matrix power

 G3: Planning and organization G5: Mathematical writing

Diagonalization
 understanding and use the principles of basic training in Linear

Algebra

Step 3: Resolution

G5: Mathematical writing
Introducing data at computer

Writing results

Step 4: Interpretation of results

G8: Critical Tinking

Analyzing solutions

Selecting outputs
G7: Information Management

Translating results to real world

Step 5: Application's conditions and other alternatives

Step 6: Generalizations

G1:Self Learning

G2: Analysis
and synthesis

G8: Critical Thinking

S2: Ability to apply knowledge, skills and technology to solve problems

Our example (generalization)

- "Repeat" the experiment if you have the same device in a hexagonal building.
Would it be possible to draw any conclusions for the position limit for a device located in a polygon with h sides?

Homework

\checkmark Analyze, according the number of sides, the limit position in the case $a=0$
There is difference between h even or odd?

Conclusions

The use of Maxima in solving problems may enhance several competences
CAS in learning and assessment process:
i) Providing documentation for using

- ii) Proposing the development of procedures for solving an algorithmic process
- iii) CAS can be used in exams

THANK YOU

GRACIAS

