Applications of Multimedia Technology to study of the ordinal competencies of scholars from 3 to 7 years old

Hernández, P.
phernandez07@gmail.com

González, J.L.
gmari@uma.es

Departamento de Didáctica de la Matemática
Universidad de Málaga
TIME, july 2010
Contents

1 The research problem
 - Starting point
 - The problem

2 Precedents and theoretical foundations
 - The ordinal skills and competencies
 - The multimedia technology

3 The research design
 - Design and construction of items
 - Categories and tasks
 - Collecting, organizing and analyzing information

4 Development

5 Results and conclusions

6 References
The start

The results from the research studies developed in the Department of Didactics of Mathematics about:

- Inductive and ordinal thought (Ortiz, 1997), (Fernández, 2001).
- Natural relative numbers (González, 1998).

The goal

To continue the ongoing researches on prenumerical and preinductive level from three to seven years old.
We have a problem:

Traditional research methodologies in Mathematics Education (interviews, written questionnaires, objective test, observation, . . .) *with young children* have disadvantages:

- Undesired interactions between subject and researcher.
- Low motivation and implication of the subjects.
- Difficulties to obtain the information.
- Limited functionality and limited information recovery.
- Higher subjectivity.
A solution? Conjecture 1:

The multimedia technology allows us to configure an scenario and a research methodology adapted to the ages and psychological characteristics of subjects.

Some advantages

A multimedia methodology have *a priori* advantages:

- Better motivation and implication of the subject.
- Better concentration of the subjects on the tasks.
- Minimal interaction between subject and researcher.
- Automatic and objective record of information.
- We can obtain a bigger amount of information easily.
The goal + conjecture 1 → new approach:

To configure an scenario and a research multimedia methodology, according to our evolutive model, and to study the ordinal competences from 3 to 7 years old.
What is known? Which are our basis?

The ordinal skills and competencies

- Epistemology of natural numbers and ordinal structures.
- Orderings and quantity, number and measure concepts.
- Orderings and the natural number from the cognitive point of view.
- The research studies that are being in the Department of Mathematics Education.

The multimedia technology

- Multi-modal functioning.
- Multimedia learning.
- Human–computer interaction.
The ordinal skills and competencies

Epistemology

- Insufficiency of Cardinal concept: the sets \mathbb{N}, \mathbb{Z}, and \mathbb{Q} are indistinguishable from a cardinal point of view (Hrbacek and Jech, 1999).
- Relevance in orderings: they are distinguishable by linear orderings.
- Natural numbers are a synthesis of cardinal, ordinal and inductive components.
- Compatibility with Piaget’s theory.

Quantity, number and measures.

- Metrics concepts are generated in a synthesis between comparative and numbers concepts.
- Numerical sets and the state ordered series of quantities are isomorphic systems, are substained mutually and, possibly, also they are coherent at the level of the construction by the individual subjects (González, 1998).
- Orderings and comparative concepts are closely linked and are both on the basis of numerics and metrics concepts, so its logical to supose that those individual development will directly influence the individual evolution of these.

The cognitive point of view

- The cognitive researchs do emphasize the operational and heuristic aspects of natural number, taking his cardinal aspect as a reference, regardless the integration of his inductive properties with his cardinal and ordinal aspects.
- Few experiments have studied the ordering of numbers in young children.
- Orderings concepts are among the slowest to be put in place in the children’s mind.
- Dehaene’s hypothesis: the adult number line and existence of a deep relation between number and space (Dehaene, 1997).

The research in the Department

- Inductive numerical thought (Ortiz, 1997).
- Logical ordinal relations in the numerical sequence (Fernández, 2001).
- Relative natural number (Ortiz, 1997).
- Obtaining of evolutionary models of inductive and ordinal thought, (Ortiz, Fernández, Op. cit.).
Basing on the previous studies we do the following conjecture:

Conjecture 2: The evolutive model

The ordinal competences of children of 3–7 years old will develop with age according to the following levels:

- **Linear infralogic ordering**: Competence to ordering the points in a line. Ordinal concepts: “before that”, “after that”, “preceding”, “next”, “forwards”, “backward”.

- **Labeling**: Competence to assign a simbol, sign, word or concept to every element included in a series.

- **Ordering on continuous quantities**: Competence to ordering longitudinal objets. Ordinal concepts: “more than”, “less than”, “greater than”.

- **Ordering on discrete quantities**: Competence to ordering discrete objets. Ordinal concepts: “more than”, “less than”, “greater than”. The aim is to detect when individuals begin to spontaneously use the counting as an strategy in the assignment of ordinal positions and when they distinguish the discrete from the continuous quantities in the arrangements.
Multimedia scenarios and multi–modal functioning

<table>
<thead>
<tr>
<th>Visual and Spatial Mode</th>
<th>Linguistic Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Layout and positioning.</td>
<td>♦ Absence or presence of words.</td>
</tr>
<tr>
<td>♦ Angle and perspective.</td>
<td>♦ Choice and use of words.</td>
</tr>
<tr>
<td>♦ Graphics and their relationship to the text and sounds.</td>
<td>♦ Presentation of text.</td>
</tr>
<tr>
<td>♦ Shape and size.</td>
<td>♦ Symbols and icons.</td>
</tr>
<tr>
<td>♦ Colour.</td>
<td></td>
</tr>
<tr>
<td>♦ Sequencing of items.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audio Mode</th>
<th>Gestural and Movement Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Music.</td>
<td>♦ Movement direction and speed.</td>
</tr>
<tr>
<td>♦ Sound.</td>
<td>♦ Dynamic interaction, cause and effect.</td>
</tr>
<tr>
<td>♦ Silence.</td>
<td>♦ Dramatic effects.</td>
</tr>
<tr>
<td>♦ Expression, mood, tone.</td>
<td></td>
</tr>
</tbody>
</table>

In our study we consider, **Multimedia scenarios**: virtual environments created and executed by a computer that includes all or some of the multimodal components: visual and spatial, linguistic, audio, gestural and movement. See figure (Way, 2003).
Multimedia learning.

- We consider both approaches (Mayer, 2001): learner–centered and technology–centered.
- The first, to build playfull tasks, in a multimedia scenario, adapted to the children’s cognitive and affective characteristics.
- The second, to record the information of the subject–computer interaction, with objectivity and minimal interaction subject–researcher.
- We have taken into account the principles of multimedia learning as principles of multimedia design (Mayer, 2001; Mayer and Al., 2005).

Human–computer interaction.

- Current computer systems are actually cognitive devices and also simulation devices (Turkle, 1995).
- The contemporary computer systems perform two broad classes of functions: epistemic functions and ontic functions (Brey, 2005).
- Epistemic functions: the computer functions as a cognitive device that extends or supplements human cognitive functioning.
- Ontic functions: computers simulated environments and tools to engage these environments.
- We redefine and adapt these general functions to a useful way for our study.
In this study we redefine:

Functions:

- *Epistemics:* they define the *specific ordinal task* to be solved.
- *Ontics:* they establish *interactive virtual environments* in which task are performed.
- *Ontic–Epistemics:* as a combination of previous, they define the *precise virtual task* to be solved.
What do we do to confirm/reject the conjectures?

Ordinal problem:
To confirm/reject the Evolutive Model of Ordinal Competences

Multimedia problem:
To develop a research methodology adapted to the ages of the infants to solve the ordinal problem

To build a multimedia methodological instrument

How we should build a multimedia task?
Process for a task

DESIGN
- Cognitive and psychomotor characteristics of the children
- Choice of descriptive or iconic representation
- Epistemic function definition
- Ontic function definition
- Onto-epistemic function determination
- Identification of the forms of intelligence involved (Gardner, 1983)

CONSTRUCTION
- Principles of multimedia design applied to the development of the task
- Collection and recording of the information
- Selection of multimodal multimedia elements
- Storage of information
- Integration and development of the task
Multimodal elements by channels

- Auditive channel
 - Narrative voice (VN)
 - Spoken text (TH)
 - Dramatic effects: exp., mood and tone (ED-TT)
 - Affective spoken message (MAH)
 - Dynamic interaction: cause and effect (ID-CE)

- Visual channel
 - Statics pictures (IE)
 - Movable pictures (IM)
 - Pictures in movement (IMT)
 - Symbols and icons (SI)
 - Dramatic effects: Facial expression and body language (EF-LC)
Multimodal elements in the sets of tasks

The sets of tasks have been made with Macromedia Director.
Tarea 4

Audio → “Mowgli quiere pasar junto a su amigo Baloo. Arrastra y coloca los troncos que necesita para conseguirlo”.

Función Epistemática

Interfaz →

Objetivo → Observar si el sujeto establece o no algún orden por tamaños, las estrategias seguidas y si discrimina o no el elemento sobrante, cuando le pedimos que coloque tres objetos lineales a elegir de entre cuatro, donde uno de ellos (el más largo) no se halla en correspondencia serial con ninguno de los huecos a cubrir.

Descripción: En esta tarea se ha mantenido el orden decreciente en el tamaño de los huecos, por tanto la estrategia decreciente coincide con la estrategia de colocación izquierda-derecha; de nuevo, es de esperar que sea la más utilizada. Pretendemos, además, determinar si la edad del sujeto influye o no en la discriminación del elemento sobrante.
Full study include four categories of tasks

According to the levels of our evolutionary model:

Sets of Tasks:

- **Linear ordering**: they are interactive games, the subject must identify, by clicking, the right path where are available several fruits, in accordance with certain serial patterns.

- **Labeling**: They are interactive games in which the subject must locate the positions of certain fruits concealed by the principal character, by means of cyclical alternations, in the rungs of a ladder doing click on them.

- **Ordering on continuous quantities**: The subject must drag and drop figures, that simulate logs, into the correct positions to help the main character to save the holes and join the secondary character, that is on the other side of the road.

- **Ordering on discrete quantities**: It consists of two subsets:
 - In the first, the subject must drag and drop several discrete amounts, from one to five fruits, in their correct positions that are at different sets of holes, placed on different trees. Fruits and holes are on numeric correspondence.
 - In the second, the child should drag and drop pieces, that simulate sets of two to six steps, to form a ladder that allows the main character to climb to reach the fruit, that is in an elevated position in the tree.

We have chosen some characters in the movie *The Jungle Book* to participate in the tasks, as motivators elements.

Hernández, P. and González, J.L. Applications of Multimedia Technology to study of the ordinal...
Linear ordering tasks

They are six verbal task:

- **Task 1**: Make sure that the children know the scene and the actions to take in subsequent tasks.
- **Tasks 2 and 3**: Apply correctly the concepts before and after, respectively, to a topological or spatio-temporal serie.
- **Task 4 and 5**: Identify a complete serie of three (first-then-last) and four (first-after-after-last) linearly ordered elements.
- **Task 6**: Identify a complete serie of four elements, starting from intermediate positions (sequence: after-before).

Audio: Each task has its own audio message.
They are six non-verbal tasks:

- **Task 1**: make sure that the children know the scene and the actions to take in subsequent tasks.
- **Tasks 2**: Ordering by size two linear objects and observe the strategies used.
- **Task 3**: ordering by size two linear objects, to choose from three, when the shortest does not correspond to any of the holes to be filled.
- **Task 4**: ordering by size three linear objects, to choose between four, when the longest does not correspond to any of the holes to be filled.
- **Task 5 and 6**: ordering by size more than three linear objects when there is no kind of suggestion implicit in the order of placement in the holes.

Audio: The audio message is common for all tasks, “Mowgli want to meet with his friend Baloo. Drag and drop the logs you need”.

![Image of a scene with Mowgli and Baloo]
Audio: The audio message is common for all tasks, “Look closely at the rungs. Each one has a fruit. In what rungs Baloo has hidden bananas? Clic where you think it should be.”.

They are seven non-verbal tasks:

- **Introductory Task**: make sure that the children know the scene and the actions to take in subsequent tasks.

- **Tasks 1 and 2**: Detect, respectively, a cyclic alternating: yes–non–yes–non–yes–non…, and its opposite, and apply them to labeling, through the color, the positions the items are located.

- **Task 3 and 4**: Detect, respectively, cyclic alternations non–yes–non–non–yes–non… and yes–non–non–yes–non–non… And apply them to labeling, in the absence of color, the positions the items are located.

- **Task 5 and 6**: Same as above but with reference to cyclical alternations of the type non–yes–non–non–yes–non… and non–non–yes–non–non–yes….
Ordering on discrete quantities (1)

This set consists of two parts or subsets.

Audio: The audio message for the first four tasks (a) is “Mowgli wants you put the oranges in the trees. Put each one in their place. But look at it carefully!”. And for the last four (b): “Mowgli wants to pick the fruits up the tree. To achieve this, help him putting the parts you need!”.
Subsets(a): four non-verbal tasks.

- **Task 1**: to know the scene and the actions to take in subsequent tasks.

- **Tasks 2, 3 and 4**: Determine if the subject uses some sort of ordinal strategy, numerical or non-numerical and procedural when involved three groups of fruits (Task 2), four groups which you must choose three (Task 3), or five groups which four must be elected (Task 4), and in these cases, if you are able to discriminate extra elements.

Subsets(b): four non-verbal tasks also.

- **Task 5**: to know the scene and the actions to take in subsequent tasks.

- **Tasks 6, 7 and 8**: To determine whether or not the children place the pieces, using the tipified strategies, in a simple 1-2-3 seriation, using either the counting or progression of sizes of the pieces together with left-right laterality (task 6), in sequential order 1–2–3–4 (task 7) or in the order 1–2–3–4–5 (Task 8), looking both to the progressive number of rungs and to the number of blocks in each piece, and if he is able of discriminate the extra pieces in each case.
Recording data

To the **linear order and labeling tasks** has been stored all the information in the **records**:

- *Location* \(v_{ij}\) (linear order) and \(p_{ij}\) (labeling).
- *Numbers of attempts* \(n_{ij}\).
- *Temporary records* \(t_i\).
- *List of actions* \(L_{istaR_i}\): list of pairs \((v_{ij}, n_{ij})\) (linear order) or \((p_{ij}, n_{ij})\) (labeling).

To the **Ordering on continuous and discrete quantities**, in the **records**:

- *Location of action* \(v_{ij}, v_{pi}\) (wrong piece).
- *Total numbers attempts* \(n_{ij}, n_{pi}\) (wrong piece).
- *Identification of attempts* \(e_{ij}, e_{pi}\) (wrong piece).
- *Numbers of failed, contradictory and null attempts* \(n_{eijk}, n_{ciijk}, n_{nij}, n_{epij}, n_{cpij}, n_{npi}\):
 - erroneously placing valid pieces (the first three) or the wrong piece (the last three) or moves pieces without ever put in any hollow (zero attempts).
- *Total numbers of failed attempts* \(i_{eij}, i_{ei}\).
- *Temporary records* \(t_i\).
- *List of actions* \(L_{istaR_i}, l_{istaAci}, l_{istaei}\): total sequence of attempts and successful and wrong attempts sequences in the task.
The results presented are a small portion of total results of the study. The following variables are related only to the results presented.

The valuation

The valuation of the tasks was done by inspection of values contained in the lists of actions. We have assigned the value 1 when the task is correctly solved. In the more complex tasks with continuous and discrete quantities (3, 4, 7 and 8), we have assigned the value 0.5 to the tasks that have been resolved with a single error. In other cases has been assigned the value 0.

Variables

In the dependent variables SumL, SumEt, SumCC and SumCD are stored, for each set of tasks, the sum of successful attempts made by each child, according to the previous valuation.

The ML, MEt, MCC and MCD are the corresponding averages obtained for the age groups and the EDG variable refers to the average ages of age groups. For the dependent variables are used scales of five units in length.
Type of study:

Transversal qualitative-quantitative intentional study to explore tendencies.
Population
Urban estándar children from 3 to 7 years old and middle-low social class without conflicts neither social marginality problems.

Sample characteristics
- 2 Centres: Intentional election from Prekindergarten and Primary schools of Málaga city (with computer classrooms and enough number of students).
- Initial sample size: 132 students.
- Stratified sampling with 8 age groups, from 3 and half years old to 7 years old by intervals of 6 months:
 - Kinesthetic basic aptitudes.
 - Appropriate size of groups to analize data.
- Final sample size: 76 students.
Sample final composition

<table>
<thead>
<tr>
<th>GED</th>
<th>N</th>
<th>Average</th>
<th>Tipic error of average</th>
<th>Tipical Desv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AM</td>
<td>10</td>
<td>3,5500</td>
<td>0,03578</td>
<td>1,1314</td>
</tr>
<tr>
<td>4A</td>
<td>10</td>
<td>4,0300</td>
<td>0,04326</td>
<td>1,3679</td>
</tr>
<tr>
<td>4AM</td>
<td>10</td>
<td>4,4960</td>
<td>0,04167</td>
<td>1,3176</td>
</tr>
<tr>
<td>5A</td>
<td>10</td>
<td>4,9970</td>
<td>0,04648</td>
<td>1,4697</td>
</tr>
<tr>
<td>5AM</td>
<td>10</td>
<td>5,4940</td>
<td>0,04812</td>
<td>1,5218</td>
</tr>
<tr>
<td>6A</td>
<td>10</td>
<td>5,8820</td>
<td>0,03702</td>
<td>1,1708</td>
</tr>
<tr>
<td>6AM</td>
<td>8</td>
<td>6,4638</td>
<td>0,03669</td>
<td>1,0378</td>
</tr>
<tr>
<td>7A</td>
<td>8</td>
<td>7,0800</td>
<td>0,07375</td>
<td>2,0860</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistic parameters of the sample
Each subject performed the tasks sequentially, with unlimited time.
The order followed was: linear order tasks, tasks of order with continuous quantities, labeling tasks and tasks of order with discrete quantities.
In the fourth set of items, each subject responded to a verbal questionnaire to identify possible strategies used.
The researcher only took part to assist the subjects occasionally (when the mouse was poorly placed on the table), to develop the questionnaire, to collect the verbal responses and to record the information.
Results and Conclusions

Hernández, P. and González, J.L.

Applications of Multimedia Technology to study of the ordinal...
Means of responses by age to the tasks of each one of the four sets of items and the corresponding fitted curves by means of the non linear regression inverse model:

\[y = a + \frac{b}{x} \]
Comparative analysis

Observed values

Fitted values
The evolution of ordinal competencies agree with the model proposed.

- It can be observed a similar behavior and evolution, according to the proposed model, of competencies related to categories 1 (Linear Order), 3 (Order between continuous quantities) and 4 (Order between discrete quantities).
- Also the differences between categories decrease as age increases.
- Finally, are remarkable the highly closed relations between order skills with discrete and continuous quantities. This result is claiming for a jointly didactical treatment of both types of quantities and measures from 3 to 7 years old.
The responses to the tasks of labeling show a different pattern; these are more than ordinal tasks.

- There is a significant gap between the results from four to five years old which can not be attributed to azar.
- Further analysis reveal that these tasks are involving something more than ordinal competencies, such as some inductive reasoning skills or certain prealgebraic ideas (to identify inductive patterns and to apply it for continue a series).
Multimedia technology is a good scenario to build a relevant and valid research methodology in mathematics education in early stages (the subjects point of view).

- Multimedia technology allows the implementation of meaningful tasks that come into play cognitive, visual-spatial and affective-emotional abilities.
- The integration of various multimodal elements get higher quality scenarios for research with young subjects and well suited to his cognitive and psycho-affective characteristics (97.37% completed the tasks proposed).
- Multimedia scenario is dynamic, playful, responds to the actions expanding the everyday world, encourages motivation and captures the attention to ensure the involvement and active participation.
Multimedia technology is a good scenario to build a relevant and valid research methodology in mathematics education (the amount, objectivity and accuracy of information and results).

- Is a good data collection and storage tool.
- Minimizes the interaction between the researcher and the subjects, preserving autonomy and attention and stimulating the imagination.
- Using the web pages format and the connection to databases it can be raised further mass studies.
References

