
Using MAXIMA in the Mathematics

Classroom

Eugenio M. Fedriani ∗ Rafael Moyano †

23th April, 2010

Abstract

Coming from the MACSYMA system and adapted to the Common Lisp standard, the

symbolic calculus program called Maxima can be regarded as a tool for a frequent use in

the maths classroom. Several circumstances may lead us to this consideration.

Firstly, this is a free software included in the Guadalinex distribution, supported by the

Junta de Andalućıa, which makes it easily available at almost every school in Andalusia.

Secondly, Maxima not only is able to manipulate and simplify algebraic expressions but

also is a programming language which allows us to create our own specific applications.

Besides, it has a lot of packages as a complement, making it suitable for working in a lot of

mathematical branches. And finally, this tool has been developed under several operative

systems, in particular, it can be implemented under Windows, Linux and Macs, which

can contribute to spread its use.

The main aim of this work is to show some of the possibilities of Maxima and its

graphical interface as a tool for teaching Mathematics at the University as well as at a

secondary school. Mathematics in Business degrees and A-levels can be provided with a

resource that will make easier the learning of this subject to students.

As a conclusion, we also present a report of the main strengths and weaknesses of this

software when used into the Mathematics classroom.

1 INTRODUCTION

The symbolic calculus program Maxima comes from the Macsyma system (MAC’s SYmbolic
MAnipulation), which was developed by the MIT (Massachusetts Institute of Technology) from
1968 to 1982 as a part of the MAC project (Machine Aided Cognition). The MIT provided a
copy of the source code to the DOE (Department of Energy) in 1982, within a version known as
DOE-Macsyma. Later on, the DOE granted the exploitation rights to the Symbolics company,

∗Department of Economics, Quantitative Methods and Economic History. University of Pablo de Olavide.

Seville. e-mail: efedmar@upo.es
†Department of Economics, Quantitative Methods and Economic History. University of Pablo de Olavide.

Seville. e-mail: rmoyfra@upo.es

1

which still developed the project for some years more. In 1992 the program was acquired by a
company called Macsyma Inc. However, its commercial exploitation was becoming less inter-
esting than before due to the appearance of some other programs, like Maple or Mathematica,
with a more friendly working environment, although deriving from Macsyma.

Simultaneously, Professor William F. Schelter from Texas Univesity kept one of the copies
of the program provided by the MIT from 1982 to his death, in 2001. This version was adapted
to the common Lisp standard, and was called Maxima to distinguish it from the commercial
version. In 1998, Shelter was allowed to spread out the source code of the DOE-Macsyma under
GNU-GLP license and, in 2000, he initializes the Maxima project in SourceForge, aiming to
keep and develop DOE-Macsyma under the name of Maxima.

Since Maxima is distributed under the GNU-GLP license, both source code and manuals
are for free access through the website of the project, (maxima.sourceforge.net).

2 INSTALLING MAXIMA

Versions of Maxima are available under Linux and under Windows. In this paper only the
Windows environment is considered. However, detailed information about the installation of
Maxima under Linux can be found in the website of the project. This includes directives on
the basic package as well as the additional modules to use the program in a basic context.

The Windows version is also available in the website of the project, where an executable
file can be freely downloaded. The program is automatically installed once this file is executed.
In this paper, version 5.17.1 has been used, provided by the file maxima-5.17.1.exe. However,
further versions are already available. The executable file not only installs the kernel but also a
collection of packages that simplify the working environment. The installation outcome includes
a text console (MSDOS mode) and two graphical environments: xMaxima (with permanent help
on screen, but only useful in command mode) and wxMaxima. This last is the most advisable
one, since it allows to work in screen mode, incorporates a text editor and includes a wide
collection of displayable menus as well as shortcuts and buttons to do a lot of mathematical
computations without using commands. Besides, two modules of graphical representation are
included: gnuplot and openmath.

Unlike some other free distribution programs, all the necessary modules and packages are
automatically installed from the executable file, that is, you do not need to download and install
one by one.

3 PRELIMINARIES

In this paper, we propose several tasks. All of them are supposed to be performed by using
wxMaxima. Besides, pop-up menus and shortcuts are not going to be detailed in the following
pages, since they can be easily deduced when used.

Let us recall that Maxima syntax uses the standard Lisp, from which it was developed. This
syntax may be a bit odd to users which are not familiar with the Lisp language.

2

3.1 Basic Rules

1. The communication with the Kernel is in question-answer mode. The question can be
simple (direct order) or multiple (program).

2. The desktop is divided into cells, and any written character is always in a cell. Cells can
be text cells or input cells.

3. Input cells can contain a command, an operation or a program, as well as several of them.
They can be written next or beneath each other, but every command or direct order must
finish with <;> or < $ > (as a courtesy of Lisp). When finished with <;>, they generate
an output showed on screen, whereas those with a final < $ > are internally executed,
without generating any output on screen.

4. Inputs generate a label like this: (%in), and the corresponding label to outputs is: (%on),
where n stands for the n-th execution. Both statements can be called by using their label.

5. A shortcut to execute an input cell is <SHIFT> + <INTRO>. Note that <INTRO> is
only useful to add a new line within a cell.

6. An input with a single order can be directly executed. By the way, wxMaxima automat-
ically includes the final <;>.

7. The result of any computation will be displayed in a simplified symbolic form, if possible.
Any approximation can be requested, similarly to any other form of simplification. If
the exact solution is not possible (for instance, when solving certain algebraic equations),
Maxima will automatically use different numerical algorithms to find approximated solu-
tions.

8. When a command is chosen from a menu or a button is pressed, a cell is automatically
generated. Then the command that develops the desired action is written in that cell and
in a suitable way.

9. A cell can be rewritten and executed as many times as desired. Cells can be inserted
anywhere throughout the desktop. However, note that wxMaxima has a word editor, but
not a word processor, so formatting text is not possible.

10. Work sessions can be saved (File/Save) or exported to HTML or TEX formats (File/Export).
A saved session only contains non-executed inputs. Outputs need to be generated again
when the saved session is restored.

11. In order to delete a cell, it must be selected (through its right bracket) before pressing
<SUPR>. An output associated to a given input cannot be deleted independently, but
it can be hidden by clicking the upper triangle in the cell’s bracket.

3

3.2 Help

For a general help, using the help menu is strongly recommendable. However, some help about
specific commands can be obtained by using ? command or describe(command)

3.3 Entering Expressions

Elemental operators: < + >, < − >, < ∗ >, < / > ,and < ˆ > or < ∗∗ >
Variables assignation: <:>
Variable names: any alphanumerical combination starting with a letter is possible, except

some reserved words (commands, built-in functions, system variables, etc).
Deleting variables from memory: Maxima/Delete variable. The default option, all,

cleans the entire memory (not the screen), even the cells’ labels.
Some constants: %e, %pi, %i (the imaginary unit), inf (real positive infinity), minf (real

negative infinity).
Some elemental functions: sqrt(x), sin(x), cos(x), tan(x), log(x) (base %e logarithm;

the remaining logarithms can be defined ‘handly’, by using the change of base formula), exp(x)
(that is, %eˆ x), abs(x), !, ceiling(x) (integer part of x, by excess), floor(x) (integer part of x,
by defect).

Comments in an input cell: expressions like /* remark */ are not evaluated when exe-
cuting an input cell.

4 BASIC ARITHMETIC OPERATIONS

(%i1) ((3^7/(4+3/5))^(-1)+7/9)^3 /*exact display*/;

(%o1)
620214013952

1307544150375

(%i2) ((3^7/(4+3/5))^(-1)+7/9)^3,numer /*approximated display*/;

(%o2) 0.47433504541634

The desired number of figures to approximate the output can be chosen in Numeric/Set
precision....

(%i3) fpprec:500$
(%i4) ((3^7/(4+3/5))^(-1)+7/9)^3,bfloat /*computing again*/;

(%o4) 4.7433504541634357659653110663[444digits]880787419334715938845721977b − 1

All the computed figures can be displayed by changing the screen mode (Maxima/Change 2d
display/ascii). The default mode can be restored through the same command (Maxima/Change
2d display 2D/xml).

(%i5) set_display(’ascii)$
(%i6) ((3^7/(4+3/5))^(-1)+7/9)^3,bfloat /*approximated display*/;

4

(%o6) 4.7433504541634357659653110663704994971764912783700770414606811628136950
969838107100483536129406164947831924562213083427561580780782359974006701807925
557865122883843408972889153788930620300011297811623235300040374745651884466295
492450590819691272713518524580933311721940714662883262489774266181631151943808
794541332850632233092100876739391301794840550376012002049028707161906720177888
433008775908348264213005274751237288598083679832699048871686555802431253716433
422042641899880787419334715938845721977b− 1
(%i7) set_display(’xml)$

5 MATRIX OPERATIONS

We can use Algebra/Enter matrix... to enter a matrix. This is a different option from Al-
gebra/Generate matrix..., which is more suitable to generate, for instance, its entries from a
general term. Of course, matrices can also be named.

(%i8) matrix([1,2,0],[2,1,0],[0,0,3]);

(%o8)





1 2 0
2 1 0
0 0 3





(%i9) a:%o8;

(%o9)





1 2 0
2 1 0
0 0 3





Matrix operations: addition, < + >; opposite element with respect to the addition,
< − >; scalar multiplication, < ∗ >; matrix multiplication, < . > (be careful: there exists
another ‘product’ that can be applied to matrices, a*b, which will multiply matrices a and b
entry by entry); inverse, Algebra/Invert matrix; determinant, Algebra/Determinant; transpose,
Algebra/Transpose matrix; cofactor matrix, Algebra/Adjoint matrix.

Note that a command appears on screen in an input cell when executing any of the above
orders. It is also possible to write directly this command instead of pulling down the corre-
spondent menu. This is a faster way of working, although you need to memorize some words.
Besides, this way of interacting increases the possibilities the program has, since not every
command is defined in a pop-up menu. On the other hand, the direct use of commands may
not be comfortable to students, so the decision on its use is up to the teacher.

Operations not available in menus: rank, rank(matriz); the minor of the (i,j)-entry,
minor(matriz,i,j); the identity matrix of size n, ident(n).

(%i10) b:matrix([1,1,1],[1,1,1],[1,1,1]);

(%o10)





1 1 1
1 1 1
1 1 1





5

(%i11) a+b; a-b; 3*a;

(%o11)





2 3 1
3 2 1
1 1 4





(%o12)





0 1 −1
1 0 −1
−1 −1 2





(%o13)





3 6 0
6 3 0
0 0 9





(%i14) a.b /*matrix multiplication*/; a*b /*entry by entry product*/;

(%o14)





3 3 3
3 3 3
3 3 3





(%o15)





1 2 0
2 1 0
0 0 3





(%i16) transpose(a);adjoint(a); invert(a);determinant(a); rank(a);

(%o16)





1 2 0
2 1 0
0 0 3





(%o17)





3 −6 0
−6 3 0
0 0 −3





(%o18)





−1

3

2

3
0

2

3
−1

3
0

0 0 1

3





(%o19) −9

(%o20) 3

6

(%i21) c:ident(4);

(%o21)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Advanced operations: characteristic polynomial, Algebra/Characteristic polynomial...;
eigenvalues, Algebra/Eigenvalues (it shows both eigenvalues and its multiplicities); eigenvectors,
Algebra/Eigenvectors (the output is a list whose first element is another list containing all the
eigenvalues with its multiplicities).

(%i22) charpoly(a, x), expand;

(%o22) −x3 + 5x2 − 3x− 9

The factorize button can be used to factorize the former polynomial as well as the menu
Simplify/Factor expression.

(%i23) factor(-x^3+5*x^2-3*x-9);

(%o23) −(x− 3)2 (x+ 1)

(%i24) eigenvalues(a);

(%o24) [[3,−1], [2, 1]]

(%i25) eigenvectors(a);

(%o25) [[[3,−1], [2, 1]], [1, 1, 0], [0, 0, 1], [1,−1, 0]]

There exists a variable called nondiagonalizable. Its value is FALSE if the matrix whose
eigenvalues were last calculated is diagonalizable, and TRUE in the opposite case. It may
be useful to check whether our matrix is diagonalizable or not. Obviously, our example must
produce a FALSE.

(%i26) nondiagonalizable;

(%o26) false

When the ‘nondiagonalizable’ output is FALSE and, consequently, our matrix is diagonal-
izable, both the similarity transformation matrix P and the similar diagonal matrix D (such
that D = P−1 · A · P) can be obtained by using the command similaritytransform. Actually,
this command produces the same result as eigenvectors, but all the given eigenvectors are now
unitary. Additionally, it assigns interesting values to two environmental variables: rightmatrix
is redefined as the transformation matrix P , and leftmatrix takes the value of P −1. Remember
that loading the eigen package is needed to use this command.

(%i27) load(eigen)$ similaritytransform(m);

(%o27) [[[3,−1], [2, 1]], [
1√
2
,
1√
2
, 0], [0, 0, 1], [

1√
2
,
−1√
2
, 0]]

7

(%i27) print(leftmatrix,".",m,".",rightmatrix,"=", leftmatrix.m.rightmatrix)$

(%o27)





√
2

2

√
2

2
0

0 0 1
√

2

2
−
√

2

2
0



 ·





1 2 0
2 1 0
0 0 3



 ·





1√
2

0 1√
2

1√
2

0 − 1√
2

0 1 0



 =





3 0 0
0 3 0
0 0 −1





5.1 Classification of Quadratic Forms

A quadratic form can be classified by using its associated symmetric matrix, once it has been
obtained. This matrix can be effectively classified by its eigenvalues or its leading principal
minors, that can be obtained by using the command submatrix(i1, ..., ik, matrix, j1, ..., jk).
Its output is the resulting submatrix from removing rows i1, ..., ik, and columns j1, ..., jk.

(%i27) q:matrix([1,2,3],[4,5,6],[7,8,9]);/*qsim is the associated symmetric matrix*/

qsim:1/2*(q+transpose(q));

(%o28)





1 2 3
4 5 6
7 8 9









1 3 5
3 5 7
5 7 9





(%i29) /*it is indefinite */eigenvalues(qsim),numer;

‘rat’ replaced 17.91647286716892 by 84727/4729 = 17.9164728272362
‘rat’ replaced 17.91647286716892 by 84727/4729 = 17.9164728272362
(%o29) [[-1.458236413618101,16.4582364136181,0],[1,1,1]]
(%i30) /*computing rank to check if classifying by minors

is possible*/ rank(qsim);

(%o30) 2

(%i31)/*The leading principal minors:*/ submatrix(2,3,qsim,2,3);submatrix(3,qsim,3);

qsim; determinant(submatrix(2,3,qsim,2,3));determinant(submatrix(3,qsim,3));

determinant(qsim);

(%o31)
(

1
)

(%o32)

(

1 3
3 5

)

(%o33)





1 3 5
3 5 7
5 7 9





(%o34) 1

8

(%o35) −4

(%o36) 0

Hence, classifying by leading minors is possible and the quadratic form remains indefinite,
obviously.

(%i37) /*polynomial form*/ [x,y,z].qsim.[x,y,z],expand;

(%o37) 9 z2 + 14 y z + 10x z + 5 y2 + 6x y + x2

We have also another option to classify the quadratic form by leading principal minors.
Although Maxima has no command to directly supply the leading principal minors of a given
matrix, we can easily build a function to do this:

(%i31)leadminors[m]:=reverse(block([l:[m],k:length(m)],for a:1 thru k-1 do

(m:submatrix(length(m),m,length(m)),l:append(l,[m])),l))$

leadpralminors[m]:=reverse(block([l:[determinant(m)],k:length(m)],

for a:1 thru k-1 do

(m:submatrix(length(m),m,length(m)),l:append(l,[determinant(m)])),l))$

In fact, we have defined two functions: leadminors[m] displays the submatrices whose deter-
minants are defined as the leading principal minors, and leadpralminors[m] displays the minors
themselves. When applied to our former matrix, the obtained result is the following:

(%i32)leadminors[qsim];leadpralminors[qsim];

(%o32) [
(

1
)

,

(

1 3
3 5

)

,





1 3 5
3 5 7
5 7 9



]

(%o33) [1,−4, 0]

We are using Maxima as a tool in the classroom, and students may find this task a little
bit hard. However, we can easily save these functions in a file and load it as a package when
needed. We will see how to do this later on.

6 VECTORS

Unlike some others symbolic calculus programs, matrices and vectors are two distinct types of
objects for Maxima. A vector is a list of numerical values. And its components are introduced
in brackets and separated with commas.

(%i38) v1:[1,2,3,4];v2:[2,4,6,8];

(%o39) [1, 2, 3, 4][2, 4, 6, 8]

Operations: < + >, < − >, < ∗ > (multiplication by scalars), < . > (scalar product),
transpose(vector) (transform a row vector into a column one).

9

(%i40) v1.v2;-1/2*v1;transpose(v2);

(%o40) 60

(%o41) [−1

2
,−1,−3

2
,−2]

(%o42)









2
4
6
8









7 SYSTEMS OF EQUATIONS

The most powerful command to solve equations as well as systems is solve(eqns,vars), which is
available from the button Solve... or the menu Equations/Solve...

To enter a system, the equations and their variables are separated by commas. This com-
mand is useful for linear and non-linear systems.

(%i43) solve([x^3-2*x^2+1=0],[x]);

(%o43) [x = −
√
5− 1

2
, x =

√
5 + 1

2
, x = 1]

(%i44) solve([x^2+y=2,x*y=1],[x,y]);

(%o44) [[x = 1, y = 1], [x = −
√
5 + 1

2
, y = − 2√

5 + 1
], [x =

√
5− 1

2
, y =

2√
5− 1

]]

Equations/Solve linear system... and Equations/Solve algebraic system... are two more
specific alternatives, but their specificity make difficult its use by students.

The solve command tries to find exact solutions but, if it fails, use numerical algorithms to
obtain an approximation of every solution. If no algorithms run or the system has no solution,
the output will be [].

When approximations are displayed, the exact solution might be found by using another way.
In the following example we can find the exact solutions by the command eliminate(eqns,vars).

(%i45) solve([x^2-y^2=1,x*y-x=1],[x,y]);
(%o45) [[x = −1, y = 0], [x = 0.6062907292072 i−0.41964337760708, y = 0.22815549365396−

1.115142508039937 i], [x = −0.6062907292072 i−0.41964337760708, y = 1.115142508039937 i+
0.22815549365396], [x = 1.839286758257819, y = 1.543689011792378]]

(%i46) eliminate([x^2-y^2=1,x*y-x=1], [x]);

(%o46) [−y
(

y3 − 2 y2 + 2 y − 2
)

]

10

(%i47) soly:solve(-y*(y^3-2*y^2+2*y-2)=0,y);

(%o47) [y = −
2

(√

3 i

2
− 1

2

)

9

(

3
−

3
2

√
11+

17

27

)
1
3

+
(

3−
3

2

√
11 + 17

27

) 1

3

(

−
√

3 i
2

− 1

2

)

+ 2

3
,

y =
(

3−
3

2

√
11 + 17

27

) 1

3

(√
3 i
2

− 1

2

)

−
2

(

−
√

3 i

2
− 1

2

)

9

(

3
−

3
2

√
11+

17

27

)
1
3

+ 2

3
,

y =
(

3−
3

2

√
11 + 17

27

) 1

3 − 2

9

(

3
−

3
2

√
11+

17

27

)
1
3

+ 2

3
, y = 0]

(%i48) makelist(solve(ev(x*y-x=1,soly[i]),x),i,1,4);

(%o48) [[x = −
18

(√

11

3
√

3
+

17

27

) 1
3

(

9
√

3

(√

11

3
√

3
+

17

27

) 2
3
+2
√

3

)

i+9

(√

11

3
√

3
+

17

27

) 2
3
+6

(√

11

3
√

3
+

17

27

) 1
3−2

],

[x =
18

(√

11

3
√

3
+

17

27

) 1
3

(

9
√

3

(√

11

3
√

3
+

17

27

) 2
3
+2
√

3

)

i−9

(√

11

3
√

3
+

17

27

) 2
3−6

(√

11

3
√

3
+

17

27

) 1
3
+2

],

[x =
9

(√

11

3
√

3
+

17

27

) 1
3

9

(√

11

3
√

3
+

17

27

) 2
3−3

(√

11

3
√

3
+

17

27

) 1
3−2

], [x=-1]]

Finally, let us see an example of solving an underdetermined system, finding its general
solution as well as some particular ones.

(%i49) solgen:solve([x+y-z=0,2*x-y=0], [x,y,z]);

(%o49) [[x =
%r1

3
, y =

2%r1

3
, z = %r1]]

(%i50) solgen,%r1:3;solgen,%r1:-2;

(%o50) [[x = 1, y = 2, z = 3]]

(%o51) [[x = −2

3
, y = −4

3
, z = −2]]

7.1 Quadratic Forms Subject to Linear Constraints

We just need to solve the equation formed by the linear constraints, and substitute the general
solution in the matrix form or in the polynomial expression of the quadratic form. As an
example, let us consider the former quadratic form q(x, y, z) = 9z2+14yz+10xz+5y2+6xy+x2

subject to the linear constraints S defined as S :

{

x+ y − z = 0
2x− y = 0

:

(%i52) solve([x+y-z=0,2*x-y=0],[x,y]);

(%o52) [[x =
z

3
, y =

2 z

3
]]

11

(%i53) subst([x=z/3,y=(2*z)/3],9*z^2+14*y*z+10*x*z+5*y^2+6*x*y+x^2);

(%o53)
76 z2

3

Hence, the former quadratic form subject to these linear constraints is positive definite.

8 GRAPHICAL REPRESENTATIONS

The shortest way to get a 2-dimensional graphical representation is using the button Plot 2D...

If a command is followed by an ellipsis, a dialog box is displayed when pressing its button.
In the case we are dealing with, the most remarkable options are the following. Expressions:
several graphics can be displayed at the same time; they must be separated by commas. Spe-
cial: this button allows us to choose between parametric or discrete representations, that can
be included all in the same graphics. Format: two different graphic modules are available:
GNUPLOT and OPENMATH; both of them are freeware and they have been added to the
Maxima distribution. GNUPLOT is more versatile, since OPENMATH does not admit certain
representations. In addition, in this version of Maxima, graphics can be embedded in a line of
our workfile (both modules display graphics on separated windows).

As an example, let us plot an explicit function and a parametric one in the same graphic.

(%i54) wxplot2d([x^3+2, [’parametric, cos(t), sin(t), [t,-%pi,%pi],

[nticks,300]]], [x,-1.2,1.2])$

(%t54)
-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 -0.5 0 0.5 1
x

x3+2
cos(t), sin(t)

To plot 3-dimensional representations, we can use the Plot 3D... button.

A dialog box similar to the former one is displayed, and the two above format options are
available. However, unlike the 2D-representations, only one representation is admitted each
time, and the Special button is not available. Therefore, parametric functions must be entered
in the Expression line in a vectorial way. When GNUPLOT or OPENMATH options are chosen
in separated windows, the obtained surface or curve can be rotated by dragging it, through the
mouse.

12

(%i55) wxplot3d(x^2-y^2,[x,-2,2],[y,-2,2], [plot_format,gnuplot],[grid,50,50])$

(%t55)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

x2-y2

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

(%i56) wxplot3d([cos(x),sin(x),x],[x,-3*%pi,3*%pi], [y,-3,3], [grid,80,80])$

(%t56)

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

[cos(x),sin(x),x]

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8
 10

8.1 Contour Lines

It is worth to mention graphical representations of level sets. When dealing with a function
f(x, y), we can ‘manually’ draw some different curves in the same graphic. If they are implicit,
the package draw should be previously loaded, for instance, by using the menu File/Load
package..., and the command implicit(function,range,range) can be applied within the wx-
draw2d(objects) command.

(%i57) a:makelist(implicit(x^2-y^2=k,x,-3,3,y,-3,3),k,1,4);

(%o57) [implicit (x2 − y2 = 1, x,−3, 3, y,−3, 3) , implicit (x2 − y2 = 2, x,−3, 3, y,−3, 3) ,
implicit (x2 − y2 = 3, x,−3, 3, y,−3, 3) , implicit (x2 − y2 = 4, x,−3, 3, y,−3, 3)]

(%i58) load("draw")$

13

(%i59) wxdraw2d(color=blue,a[1],color=red,a[2],color=green,a[3],color=black,a[4]);

(%t59)
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

(%o59) [gr2d (implicit, implicit, implicit, implicit)]

This process can be automated by using the command wxcontour plot(function,[range],[range]),
which can work with implicit functions (besides, we have used the set plot option command to
set the desired number of contour lines, but the description of its use is beyond the aim of this
paper).

(%i60) set_plot_option([gnuplot_preamble,"set cntrparam levels 15"])$

wxcontour_plot(x^2-y^2,[x,-4,4],[y,-4,4]);

(%o61)

 15
 10
 5
 0
 -5

 -10
 -15

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

 0

 1

 2

 3

 4

Note that any graphical command starting with wx- can also be written without this prefix,
but generating the plotting on a separate window.

Finally, both the surface and its contour lines can be represented in the same graphic by
adding the [gnuplot preamble,“set contour”] option:

14

(%i62) wxplot3d(x^2-y^2,[x,-5,5],[y,-5,5], [gnuplot_preamble,"set contour"])$

(%t62)

-6
-4

-2
 0

 2
 4

 6-6
-4

-2
 0

 2
 4

 6

-30
-20
-10

 0
 10
 20
 30

x2-y2

 20
 10
 0

 -10
 -20

-30

-20

-10

 0

 10

 20

 30

9 LIMITS AND SUMS

We do not need to distinguish between functions and sums to compute limits. On the other
hand, most teaching needs can be satisfied by using the menu Calculus/Find limit... Recall
that Maxima can distinguish between ‘infinities with sign’ (inf, minf) and ‘without it’ (infinity).

(%i63) ’limit(1/x,x,0);limit(1/x,x,0);

(%o63) lim
x→0

1

x

(%o64) infinity

(%i65) ’limit(1/x, x, 0, minus);limit(1/x, x, 0, minus);

(%o65) lim
x→0−

1

x

(%o66) −∞

Notice that we have used the symbol <′> before some operators. Any operator preceded
by <′> is not evaluated. This ‘trick’ can be used to show the desired limit written in a
mathematical format.

We can get it even prettier by using the command print, but the only alternative is to write
the following line by our own:

(%i67) print(’limit((n^3-7*n^2)/(n^2-3*n), n, inf),"=",

limit((n^3-7*n^2)/(n^2-3*n), n, inf))$

lim
n→∞

n3 − 7n2

n2 − 3n
= ∞

15

The menu Calculus/Calculate sum... also satisfies our teaching needs widely.
(%i68) /*Direct computing*/ sum(7*n^2-3*n, n, 5, 15), simpsum;

(%o68) 8140

(%i69) ’sum(1/2^k, k, 1, inf);sum(1/2^k, k, 1, inf), simpsum;

(%o69)
∞
∑

k=1

1

2k

(%o70) 1

To finish this section, let us remark that Maxima contains a package (solve rec) whose
solve rec(recurrence relation, general term, first term) command can compute the general term
of a sequence defined by a recurrence relation. This may be useful when dealing with arithmetic
or geometric progressions. Bear in mind that this package must be load previously.

Example: find the general term of an arithmetic progression whose first term is 243 and
its difference equals −17.

(%i71) load("solve_rec")$
(%i72) solve_rec(x[n+1]=x[n]-17,x[n],x[1]=243);

(%o72) xn = 260− 17n

10 DERIVATIVES AND OPTIMIZATION

Firstly, let us see how to define functions. Maxima allows us to introduce functions in two dif-
ferent ways, but the assignation operator must be <:=> in both cases. The following examples
illustrate this task:

(%i73) g(x,y):=%e^(x*y)-1/sqrt(x*y);h[x,y,z]:=log(x*y*z);f(x,y):=[1/x,1/y,1/(x*y)];

(%o73) g (x, y) := ex y − 1
√
x y

(%o74) hx,y,z := log (x y z)

(%o75) f (x, y) := [
1

x
,
1

y
,
1

x y
]

In every case, specific values can be obtained by substituting the variables in:
(%i76) g(-2,-1);h[-3,2,-5];f(3,-4);

(%o76) e2 − 1√
2

16

(%o77) log (30)

(%o78) [
1

3
,−1

4
,− 1

12
]

Besides, we can use Calculus/Differentiate... to compute derivatives.
(%i79) ’diff(g(x,y),x,2);diff(g(x,y),x,2);

(%o79)
d2

d x2

(

ex y − 1
√
x y

)

(%o80) y2 ex y − 3 y2

4 (x y)
5

2

(%i81) diff(h[x,y,z],z,3);

(%o81)
2

z3

(%i82) diff(f(x,y),x,1);

(%o82) [− 1

x2
, 0,− 1

x2 y
]

Maxima contains a linearalgebra package, in which two interesting commands are included:
hessian(f,[x1;...;xn]) computes Hessian matrices, and jacobian([f1,...,fk],[x1,...,xn]) computes
Jacobian matrices as well as gradients. The gradient is treated here as a single component
vector, which is not so natural. So, we can write some simple sentences to compute gradients
and Hessian matrices in the way we usually do.

(%i83) gradient[f,l]:=makelist(diff(f,l[i]),i,1,length(l))$
hessi[f,l]:=makelist(gradient[a,l],a,gradient[f,l])$

hessiana[f,l]:=apply(’matrix,hessi[f,l])$

jacobiana[f,l]:=apply(’matrix,gradient[f,l])$

(%i87) gradient[g(x,y),[x,y]];hessiana[h[x,y,z],[x,y,z]];
jacobiana[f(x,y),[x,y]];

(%o87) [y ex y +
y

2 (x y)
3

2

, x ex y +
x

2 (x y)
3

2

]

(%o88)





− 1

x2 0 0
0 − 1

y2 0

0 0 − 1

z2





(%o89)

(− 1

x2 0 − 1

x2 y

0 − 1

y2 − 1

x y2

)

17

As we have said before, this programming might be a bit hard for students. So we can save
our programs in a file that will be treated as a package. For instance, let us save the former
orders in a package-file called mypack.mac by using the File/Save as command and selecting
Maxima batch file as a type of file. We can supply it to our students and they only need to
load it by using the File/Load package command and selecting Name: mypack from the suitable
adress and Type: All. As a result, a message like this will be displayed on the screen:

(%i90) load("C:/Documents and Settings/Mis documentos/Maxima_docs/mypack")$

10.1 Computing Optima

The theoretical results to compute optima can be used with the aid of the tools we have
already seen. Just remark the best way to substitute a vector in a Hessian matrix: by using
the at(matriz hessiana,[v1=k1,...,vn=kn]) command instead of Simplify/Substitute.

Example: compute the optima of f(x, y) = x4 + y4 + 2xy.

(%i6) /*Critical points*/ gradient[x^4+y^4+2*x*y,[x,y]];

(%o6) [2 y + 4x3, 4 y3 + 2x]

(%i7) solve([2*y+4*x^3,4*y^3+2*x],[x,y]);

(%o7) [[x = − i−1

2
, y = i+1

2
],[x = i+1

2
, y = − i−1

2
], [x = − 1√

2
, y = 1√

2
],[x = 1√

2
, y = − 1√

2
],

[x = − i+1

2
, y = i−1

2
],[x = i−1

2
, y = − i+1

2
], [x = − i√

2
, y = − i√

2
], [x = i√

2
, y = i√

2
],[x = 0, y = 0]]

(%i8) /*Sufficient condition just for (0,0)*/ hessian[x^4+y^4+2*x*y,[x,y]];

(%o8)

(

12x2 2
2 12 y2

)

(%i9) /*Substituting*/ at(%,[x=0,y=0]);

(%o9)

(

0 2
2 0

)

(%i10) /*Eigenvalues*/ eigenvalues(%);

(%o10) [[−2, 2], [1, 1]]

So (0, 0) is a saddle point. Hence, we have no real optimum this time. In fact, the plotting
of the function in a neighborhood of (0, 0) is the following:

18

(%i11) wxplot3d(x^4+y^4+3*x*y, [x,-0.5,0.5],[y,-0.5,0.5],[plot_format,gnuplot])$

(%t11)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5-0.5
-0.4

-0.3
-0.2

-0.1
 0

 0.1
 0.2

 0.3
 0.4

 0.5

-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

y4+3*x*y+x4

-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

11 INTEGRATION

When dealing with the integration of real-valued functions, most of common teaching needs are
satisfied with the menu Calculus/Integrate... Let us see some examples of simple and double
integrals.

(%i12) integrate(x^3-3*x, x);

(%o12)
x4

4
− 3x2

2

(%i13) print(’integrate(sin(x)-x,x,0,%pi/2),"=",integrate(sin(x)-x,x,0,%pi/2))$

∫ π

2

0

sin (x)− xdx = −π2 − 8

8

As an example, let us compute the double integral of the function f(x, y) =
xy

x2 + y2
on the

interval [2, 4]× [1, 3] of IR2:
(%i14) ’integrate(’integrate((x*y)/(x^2+y^2),y,1,3),x,2,4);

integrate(integrate((x*y)/(x^2+y^2), y,1,3),x,2,4);

(%o14)

∫

4

2

x

∫

3

1

y

y2 + x2
dydx

(%o15)
25 log (25)

4
− 17 log (17)

4
− 13 log (13)

4
+

5 log (5)

4

Eventually, Maxima can also compute improper integrals as the following examples illus-
trate:

19

(%i16) ’integrate(1/x^2,x,1,inf);integrate(1/x^2,x,1,inf);

(%o16)

∫ ∞

1

1

x2
dx

(%o17) 1

This integral is equivalent to:
(%i18) limit(integrate(1/x^2,x,1,k),k,inf);

Is k-1 positive, negative, or zero? positive

(%o18) 1

(%i19) ’integrate(1/(x^(1/2)),x,0,1);integrate(1/(x^(1/2)),x,0,1);

(%o19)

∫

1

0

1√
x
dx

(%o20) 2

And this integral is equivalent to:
(%i21) limit(integrate(1/x^(1/2),x,k,1),k,0);

Is k-1 positive, negative, or zero? negative;

Is k positive, negative, or zero? positive;

(%o21) 2

12 FINAL CONSIDERATIONS

Hopefully, we got a general idea about the possibilities of Maxima in the mathematics classroom
from all what has been presented above. But, for the sake of completeness, let us remark some
advantages and disadvantages of this software, according to our opinion, of course.

From our point of view, the main advantages of Maxima (under the wxMaxima environment)
are:

1. Its workspace is the whole screen, that is, we have at our disposal far more than a single
line to introduce expressions.

2. wxMaxima can also be used as a text editor, although a bit limited. The draft of this
paper has been elaborated with it.

3. As we have seen before, almost all the educative mathematical needs can be satisfied by
using buttons as well as menus, so students hardly need to memorize any command’s
name.

20

4. Maxima is a powerful software with very efficient algorithms, as well as a good program-
ming language incorporating, among others procedures, recursive programming.

5. Expressions can be modified or erased in the same place they are on the screen, that is,
they do not need to be reedited. Like any text editor, the cut, copy and paste options are
also available.

6. Windows installation is very easy: just, executing the installation file is needed.

7. Maxima is freeware, and all its manuals can be freely distributed. So it is available for any
student in any place, even at home. The saved money on license fee can be considerable.

8. This software is being continuously updated (latest version: 5.21.1). The current version
provides a huge variety of packages from Discrete Mathematics to Statistics, Numerical
Analysis, Geometry and so on. But contributions are always joined to Maxima, getting
a better interface and more possibilities, not just for Mathematics (indeed Maxima has a
graphical package which allows us to draw a map of most of the countries in the world).

Disadvantages are rather didactic than in terms of efficiency. The most remarkable ones
could be:

1. Some kind of data seems to be duplicated or defined in two different ways. This could be
caused by the inheritance from Lisp. For instance: we have numerical functions (variables
in parenthesis) f(x, y) as well as array or ‘memory’ functions (variables in brackets) f [x, y];
there are two assignation operators: <:> for constants and <:=> for functions; data such
as matrices matrix([],[]) and lists of lists [[],[]] are considered to be distinct.

2. Some syntax are not intuitive enough. For instance, we have to write is(equal(A,B))
instead of is(A=B) to check whether A and B are equal.

3. Simplification of numeric expressions is ‘compulsory’, that is, we cannot see

1

2
+

1

3
2

written

in this way on screen because
5

12
(the resulting fraction) is automatically displayed. But

this can be avoided with some other symbols like diff or integrate using the <′> prefix as
we have seen before.

4. Despite having pop-up menus, the Maxima version we have used (5.17.1) does not have
some palettes of commands to ease its use. These palettes are available for later versions.

However, despite all these disadvantages, we can conclude that wxMaxima is an efficient
alternative to the traditional software used in the mathematics classroom.

21

References

[1] E.M. Fedriani, M.C. Melgar and Á.F. Tenorio. Matemáticas para la Adminis-
tración y Dirección de Empresas Ed. Elaleph.com 2007.

[2] E.M. Fedriani and M.C. Melgar. Prácticas informáticas para las Matemáticas de
LADE. Dpto. Economı́a, Métodos Cuantitativos e Historia Económica, Universidad Pablo
de Olavide. 2008.

[3] M. Rodŕıguez and J. Villarte. Manual de Maxima (versión en español). max-
ima.sourceforge.net. 2008.

[4] J.R. Rodŕıguez Galván. Maxima con wxMaxima: software libre en el aula de
matemáticas. Dpto. Matemáticas y Oficina de Software Libre de la Univ. de Cádiz. 2007.

[5] M. Rodŕıguez Riotorto. Primeros pasos en Maxima. www.biomates.net. 2006.

22

