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Abstract

The educative fact is inherently multivariate, since there are lots of factors affecting
each student and their performances. Due to this, both measuring of skills and assessing
students are always complex processes. This is a well-known problem, and a number of
solutions have been proposed by different specialists. But, in most of cases, it is clear that
the different progress levels of students in the Mathematics classroom make also difficult
the teaching work. We think that a measure of the heterogeneity of the different student
groups could be interesting in order to avoid such difficulties, or to prepare some strategies
to deal with this kind of problems.

The major aim of this work is to develop some new tools, complementary to the
statistical ones that are commonly used for these purposes, to study situations related to
education (mainly to the detection of levels on mathematical education) in which several
variables are involved. These tools are thought to simplify and better understand these
educational problems and, through this comprehension, to improve our teaching work.

Several authors in our research group have carried out some mathematical, theoretic
tools, to deal with multidimensional phenomena, and applied them in business models.
These tools are based on multidigraphs. In this work, we implement these tools by using
symbolic computational software and apply them to study a specific situation related to
the mathematical education.

1 Introduction

According to the Andalusian Education Law preamble (LEA [1]), ‘the improvement experi-
mented by the Andalusian Educative System in recent years cannot be denied’. However, the
existence of aspects to be improved is also recognized within the same text. Detecting all these
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aspects is a complex task necessary to analyse and evaluate the Educative System. Besides,
this evaluation has to be rigorous, exhaustive and objective.
The complexity of such analysis is obvious, and mainly due to the large amount of variables
that involves. Although this number of variables makes the studies difficult, its importance is
undoubted. A precise diagnosis could be the key to improve the education or to explain why
certain plausible measures do not work in practise when taken.
Phenomena depending on several variables are called multivariate. Several papers prove that
education is a multivariate phenomenon. Let us cite some examples: [4], [12], [13] and [14], all
of them from official sources.
The above documents, and specially the OECD Programme for International Student Assess-
ment, PISA 2006, consider several analysis units apart from multiple variables. For instance,
to study the worldwide academic level, education in every country is considered, and conclu-
sions are deduced from an interrelation of data. Even another subdivision can be considered,
taking into account the so-called components of each analysis unit. For example, we can study
the educative system in each Spanish region (more precisely, each autonomous community) in
order to infer some conclusions about the national one.
Apart from these considerations, the educative phenomenon owns some other aspects that
cannot be quantified [9]. But the description of these non-quantitative features exceed the goal
of this paper. We only deal with some quantitative aspects of education in an alternative way
to the statistical one, traditionally used.
This novel, topological approach was first developed in the Department of Economics, Quanti-
tative Methods and Economic History, at Pablo de Olavide University, in Seville. Its seminal
works are the following three:
In [10], Mart́ın uses multidigraphs for a theoretical study of poverty and a more-in-depth
analysis in some specific cases. In fact, she defines several topological indicators associated to
these multidigraphs. The newest contribution of this topological technique is the simultaneous
consideration of all the variables, taking always into account the multivariate feature of the
phenomenon.
In [11], Mı́nguez continues Mart́ın’s work, applying topological indicators to analyze poverty
again, from an economical point of view, and determining their stability.
In [15], Ballesteros, Hernández and Fedriani carry out a study about the development of mining
heritage tourism in Andalusia, from the analysis of five mining Andalusian towns. Graph
Theory is also involved in this evaluation.
Digraphs and topological models have also been used in Input-Output Analysis, a branch of
Economics. Fedriani and Tenorio characterize in [6] the autonomous sets and the fundamental
products of a given economy from the adjacency matrix of an associated digraph. Besides,
they obtain some algorithms to find both autonomous sets and fundamental products and even
implement some of them. In general, the use of multidigraphs can ease the implementation of
algorithms.
Continuing with economical applications, in [8], Kaufmann and Gil-Aluja apply multidigraphs
and neuronal networks to Economics and Business Management. In this work, multidigraphs
and neuronal networks are related through the so-called neuronal graphs. They only apply this
objects in an economical context, although further applications are also feasible, like diagnosis
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in education, which is our main goal.

An important advantage of these topological techniques is that the multivariate feature is al-
ways present, because they allow us to work with all the variables at the same time and to
make a comparison among all the analysis units within a case study (for instance, different
countries, communities or educational centers). In this paper we apply the mentioned topolog-
ical indicators to study the organization of groups in two secondary schools in Seville according
to the results obtained in the diagnostic tests of mathematical capabilities carried out by the
Consejeŕıa de Educación of the Junta de Andalućıa during the 2007-2008 academic year [3].

Let us remark that, in the educative practice, the utility of these tools is twofold, comprising
organization and teaching. From an organizational point of view, we can assure the design of
more homogeneous or specific groups, since we can simultaneously study several features of the
students, depending on the educational needs of the center. Didactically, they are useful tools to
complement studies on Statistics along the Secondary period. Further didactic considerations
are described beyond this paper.

Next, we are going to study the homogeneity of the 3rd course of ESO groups in two secondary
schools in Seville, during the 2007-2008 academic year. Besides, we are going to arrange them in
order of general skills in Mathematics by using three topological tools: the Intensity Topological
Indicator, the Disparity Topological Indicator and the Competence Levels. Our data source is
the Consejeŕıa de Educación of the Junta de Andalućıa [3].

2 Intensity Topological Indicator

In this section, the Intensity Topological Indicator will be defined and later applied to analyse
the diagnostic tests of mathematical capabilities for students on 3rd course of ESO in two
secondary schools in Seville during the 2007-2008 academic year. The data base has been
provide by the Consejeŕıa de Educación of the Junta de Andalućıa [3], although we are not
authorized to publish the names of these centers. One of them (from now on, CENTER 1) lies
in the center of the city and the other one belongs to a rural area of the province (our CENTER
2).

The diagnostic tests are applied to all students on 3rd course of ESO in Andalusia, and try to
measure the mathematical skills that students have got after the first two years in a secondary
comprehensive school.

Terminology and notation on Graph Theory can be found in [5, 7], although all the concepts
used will be defined here, in order to ease the reading of this paper.

Let us define the universe U of our study as the set of students on 3rd course of ESO in
CENTER 1 or CENTER 2 during the 2007-2008 academic year.

Let us split U into two analysis units: C1 and C2. C1 is formed by the students of U in
CENTER 1, while C2 refers to the students of U in CENTER 2. Obviously, C1 ∪ C2 = U and
C1 ∩ C2 = ∅, so {C1, C2} is a partition of U .

Besides, for every analysis unit, let us define a partition set whose elements will be called
components. So 3A, 3B, 3C and 3D are the components of C1 defined as the sets of students
in CENTER 1 belonging to groups A, B, C and D, respectively. Analogously, let 3A′, 3B′, 3C ′
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Figure 1: Bipartite graphs associated to C1 and C2.

and 3D′ be the components of C2 with the students in the groups of CENTER 2 (again, 3rd
of ESO A, B, C and D, respectively. As there are two more groups of students in 3rd course
of ESO in CENTER 2, corresponding to a special level called Diversificación Curricular, we
obtain another two components denoted by Div1 and Div2. Students in these two groups are
pupils with detected learning difficulties.

Hence, we have that C1 components are {3A, 3B, 3C, 3D} and C2 ones are
{3A′, 3B′, 3C ′, 3D′, Div1, Div2}.

Now, let us consider three dimensions (or variable names) included in our data source. These
dimensions are defined as: organizing, understanding, and interpreting information, denoted
by O; mathematical expression, denoted by E; and planning and solving problems, denoted by
P . These variables take numerical values from 1 to 6.

In a preliminary step, for any variable, a threshold is defined. Its use will be explained later on.
For every variable, we have chosen (as our threshold) the arithmetic mean of the means of all
values taken by this variable in each analysis unit. Their values has been computed from our
data source [3], obtaining the following: threshold for O = 4; threshold for E = 3; threshold for
P = 4.

In general, we consider that a unit is competent with respect to a given variable if the value
of the variable for this unit is greater than or equal to the threshold fixed for this variable.
Of course, some variables may take values greater than or equal to their threshold (and some
others not) in a same unit, and this may happen in each unit. We need some graph tools to
establish an order according to this situation.

Let us define a bipartite graph for every analysis unit (see [11]). A bipartite graph has its
vertex set divided into two classes, and any edge has its extremes into two different classes. In
our case, the first vertex class is {3A, 3B, 3C, 3D} for C1 and {3A′, 3B′, 3C ′, 3D′, Div1, Div2}
for C2. In both cases, the second class is {O,E, P}.

The edges are defined as follows. A vertex in the first class is linked to another one in the
second class if the value of the represented variable in the represented component is greater
than or equal to its threshold. The resultant graphs are shown in Figure 1.

Note that the above construction is based on Table 1, extracted from our data source [3].
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3A 3B 3C 3D
O 5 4 5 5
E 3 3 2 3
P 4 5 4 4

3A’ 3B’ 3C’ 3D’ Div1 Div2

O 4 4 4 5 3 4
E 3 3 3 4 2 3
P 3 4 4 5 2 3

Table 1: Values of O, E and P , for C1 and C2.

The Intensity Topological Indicator (ITI) is defined as follows (see [10, 11] for further details).

Definition 1. Let G be the bipartite graph associated to the analysis unit C, with V (G) =
V1 ∪ V2, where V1 is the vertex class whose elements are the analysis unit components and V2

is the vertex class whose elements are the considered variables. Then, the Intensity Topological

Indicator is defined as ITI(C) =
#(E(G))

#(V1)
.

The classical notation from Graph Theory is also used here (see [5, 7]), where V (G) is the set
of vertices of a graph G, and E(G) is the set of its edges. Besides, #(A) is the cardinal of set
A, that is, how many elements A has.
From Definition 1, we have that 0 ≤ ITI(C) ≤ #(V2); the more ITI(C) approaches 0, the less
intensive is the considered property in C.

We have obtain that, for C1, #(A(G)) = 11 and #(V1) = 4 (see Figure 1), so ITI(C1) =
11

4
=

2.75 (0 ≤ ITI(C1) ≤ 3).

For C2, #(A(G)) = 13 and #(V1) = 6 (Figure 1), so ITI(C1) =
13

6
= 2.17 (0 ≤ ITI(C2) ≤ 3).

It is advisable the use of some other indicators before coming to a definitive conclusion but,
from ITI, we can infer that both analysis units are slightly under the average level of

mathematical competence, because the average value is ITI = 3, and the order according
to maths skills is C2 ≺ C1, since ITI(C2) = 2.17 < 2.75 = ITI(C1).
We can complete this preliminary analysis. In [10, 11], the partial indicators with respect to
every variable are also defined:

Definition 2. Based on the indicated notation in Definition 1, the partial Intensity Topological

Indicator with respect to variable T (ITIT ) is defined as ITIT (C) =
δ(T )

#(V1)
, where δ(T ) denotes

the degree (or valency) of vertex T , that is, the number of edges which are incident with T (see
[10, 11]).

From Definition 2, we immediately have that
k

∑

i=1

ITITk
(C) = ITI(C), where T1, ..., Tk are the

considered variables. In addition, we have that 0 ≤ ITIT (C) ≤ 1.
In our case, the values obtained for the partial indicators applied to C1 and C2 are the ones in
Table 2.
Note that only ITIE is less than 1 in C1, whilst all the partial indicators are under 1 in C2.
Besides, the order with respect to variable E is C1 ≺E C2, whereas the order with respect to the
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Unit ITIO ITIE ITIP ITI

C1
4

4
= 1.000 3

4
= 0.750 4

4
= 1.000 2.750

C2
5

6
= 0.835 5

6
= 0.835 3

6
= 0.500 2.170

Table 2: Partial indicators for C1 and C2.

Unit ITIO ITIE ITIP ITI

C1 100 % 75 % 100% 91.67 %
C2 83.5 % 83.5% 50% 72.23 %

Table 3: Partial indicators for C1 and C2, in relative terms.

other two variables is C2 ≺O,P C1. The indicator has already been globally studied. Indicators
can also be expressed in relative (percentage) terms as Table 3 shows.

3 Disparity Topological Indicator

We have arranged our analysis units in order of mathematical skills, by using the ITI. Besides,
we have determined the global competence level of each one with respect to the thresholds of
the considered variables.

But it would be also desirable to establish different levels of competence and classify every
component into these levels, to get an idea of the homogeneity of the components. We can do
this by using the Disparity Topological Indicator (DTI). In our study, we will check the homo-
geneity of the groups in the studied centers and the differences between groups in mathematical
competence.

So, let us consider each unit separately to establish a homogeneous competence level in another
example also related to education.

3.1 Associated Multidigraph Construction

We are going to associate a multidigraph (directed graph with multiple edges) to each unit,
separately. In our case, we denote these multidigraphs by G(C1) and G(C2), respectively,
and they are defined as follows: each set of vertices (usually called nodes, when dealing with
digraphs) will be the set of components of every unit, that is, V (G(C1)) = {3A, 3B, 3C, 3D}
and V (G(C2)) = {3A′, 3B′, 3C ′, 3D′, Div1, Div2}. The considered variables will be the same
introduced in the above section, that is, O, E and P . Finally, the edges (or arcs, in the case
of multidigraphs) of G(C1) and G(C2) are defined in the following way: vertices i and j are
connected if the value of any variable at i is greater than or equal to the one at j. In a practical
sense, this means that group i is more competent than group j in the aspect represented by
the considered variable.
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Figure 2: Multidigraphs associated to C1 and C2.

Sometimes, it could be advisable (not necessary, though) to distinguish among the edges ac-
cording to the variable they come from.
Figure 2 shows multidigraphs G(C1) and G(C2).

3.2 Competence Levels

As insinuated before, components in every unit are going to be classified into levels such that
components in a given level have a ‘similar’ mathematical competence and form a homogeneous
block. Besides, all these levels will be ordered from higher to less mathematical competence.
Obviously, the more homogeneous an analysis unit is the less the number of levels it has. The
ideal case of homogeneity takes place when a unit has only one level where all its components
are in. In a practical sense, we may use this information to determine whether students has
been homogeneously distributed in groups according to their mathematical skills.
A useful tool to deal with the complex multidigraphs shown in Figure 2, is their adjacency
matrix, that is, a square matrix whose order is the number of vertices of the multidigraph
and whose entry mij is the number of directed edges from vertex i to vertex j (see [5, 7] for
further details). The adjacency matrices associated to multidigraphs G(C1) and G(C2) are,
respectively:

M(C1) =









0 1 1 0
1 0 2 1
0 1 0 0
0 1 1 0









M(C2) =

















0 0 0 0 3 0
1 0 0 0 3 1
1 0 0 0 3 1
3 3 3 0 3 3
0 0 0 0 0 0
0 0 0 0 3 0

















In [8], Kaufmann and Gil-Aluja define the transitive closure of a graph as another graph whose
adjacency matrix is the boolean addition of the boolean powers of the original graph adjacency
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matrix, from 1 to the number of vertices of this graph. The boolean addition of two matrices
is defined as another matrix whose entries are all 0 or 1. An entry is 0 when the correspondent
element in the ordinary addition is 0, and 1 otherwise. The boolean product of two matrices is
defined in a similar way, and a boolean power (of natural exponent) is defined as the boolean
product of a matrix by itself as many times as indicated by the exponent. Matrices of the
transitive closures of G(C1) and G(C2) are:

M̂(C1) =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









M̂(C2) =

















0 0 0 0 1 0
1 0 0 0 1 1
1 0 0 0 1 1
1 1 1 0 1 1
0 0 0 0 0 0
0 0 0 0 1 0

















A graph is said to be strongly connected if any two distinct vertices are connected by a path.
A strongly connected subgraph is maximal if it is not strictly contained in another strongly
connected subgraph (see [5, 7, 8] for further details). Obviously, a strongly connected graphs
has just one maximal strongly connected subgraph, the whole graph.
In our practical case, all components in a same maximal strongly connected subgraph are
considered with a similar level of competence, because every component is connected to the
rest. So, to determine the competence levels is related to find the maximal strongly connected
subgraphs, to some extent.
Every maximal strongly connected subgraph can be obtained from the transitive enclosure of
a graph. Indeed, for any vertex Xi, the maximal strongly connected subgraph where Xi lies is:

C(Xi) = (Γ̂(Xi) ∩ Γ̂−1(Xi)) ∪ {Xi} (1)

where Γ̂(X) is the set of vertices Xj such that there exists a path from X to Xj (in the adjacency

matrix of the transitive enclosure, entry m̂ij = 1), and Γ̂−1(X) is the set of vertices Xj such
that there exists a path from Xj to X (in the adjacency matrix of the transitive enclosure,
entry m̂ji = 1).
Therefore, a graph is strongly connected if and only if every entry of the adjacency matrix of
its transitive enclosure equals 1.
In our case, M̂(C1) is a matrix whose entries (all of them) equal 1, so G(C1) is strongly
connected. Thus, unit C1 has components with a similar level of mathematical competence.
Hence, groups of the 3rd course of ESO can be said to be quite homogeneous with respect to
mathematical skills and, for this reason, we cannot distinguish better or worse groups. Notice
that, according to many specialists, grouping student in groups with similar levels is considered
better than getting groups of ‘good’ and ‘bad’ students. This last statement may be questioned
but, in any case, this controversy is beyond the goal of this paper. Our aim is only to measure
the level of homogeneity among different groups, and this information can be useful to whom
it may concern the management of the involved center.
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However, the obtained maximal strongly connected subgraphs for G(C2), by applying 1, are
the induced by the vertices {3A′}, {3B′}, {3C ′}, {3D′}, {Div1} and {Div2}; that is, there are
not maximal strongly connected subgraphs with more than one vertex.
As commented before, components lying in a same maximal strongly connected subgraph are
‘similarly’ competent. But components in two distinct maximal strongly connected subgraphs
can also have the same level of competence. Thus, it would be desirable to define a set of levels
or layers that fulfill the following conditions:

1. Layers must be disjoint, that is, each vertex must be in a unique layer.

2. The union of all layers must be the whole graph.

3. Layers must be totally ordered. From a practical point of view, this means that the level
of competence for two distinct layers must be always comparable.

The following algorithm can be applied to split a given graph, G, into layers:
Firstly, an associated graph G′ is built by contracting to a point (a vertex) every maximal
strongly connected subgraph (see further details about the contraction of graphs in [5, 7]). The
obtained graph, G′, has no cycle.
Secondly, the following algorithm (by Kaufmann and Gil-Aluja) [8] is applied on G′: Let layer
N ′

0
be the set of vertices of G′ such that no edge ends on them. Layer N ′

1
is defined as the

set of vertices of G′ − N ′

0
such that no edge ends on them. Layer N ′

2
is the set of vertices of

G′ − (N ′

0
∪N ′

1
) such that no edge ends on them, and so on. This is a finite process because at

least a vertex is removed from G′ in every step and G′ is assumed to be finite.
Finally, let Nk be the set of vertices of G lying in a maximal strongly connected subgraph
contracted to a point of N ′

k in G′.
Graph G(C1) is strongly connected, so only layer N0 is defined when the algorithm is applied
to it, and N0 is the set of vertices of G(C1). Implications of this result has been commented
above.
Graph G(C2) has no maximal strongly connected subgraph with more than one vertex, so
Haufmann and Gil-Aluja’s algorithm is applied directly, without any previous contraction.
Figure 2 shows 3D′ as the only vertex not being an edge-end, so N0 = {3D′}. When deleting
this vertex, there is no edge ending on 3B ′ or 3C ′, so N1 = {3B′, 3C ′}. Continuing this process,
we have that N2 = {3A′, Div2} and N3 = {Div1}.
Recall that the origin vertex of an edge has a greater level in competence than its end, with
respect to the considered variable and according to our construction. Thus, we can arrange the
following order among the obtained layers:
{3D′} ≺ {3B′, 3C ′} ≺ {3A′, Div2} ≺ {Div1}
and our practical interpretation could be the following:
Four distinct levels in mathematical competence can be observed in C2. Distribution of 3rd
ESO students in groups is not homogeneous in this center.
The group associated to 3D′, that is 3rd ESO D, presents the highest mathematical competence.
Thus, students of 3rd course of ESO with the best skills in Mathematics can be found there.
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The group associated to Div1 (Diversificación Curricular 1) presents the worse difficulties in
Mathematics (or the lowest competence level), which could match with the special features of
this educative program.

The groups associated to 3A′ and Div2, respectively, lie in the same layer, so their students’
mathematical skills are similar. However, students under Diversificación Curricular program
are suppose to have special difficulties or a lower competence; so, using this information, the
correct choice of this group for Diversificación Curricular should be questioned.

A priori, only two layers should have been expected for C2: {3A
′, 3B′, 3C ′, 3D′} and {Div1, Div2},

in this order. The obtained result lead us to reconsider the grouping of students in 3rd course
of ESO for this center and, consequently, the selection of students for for Diversificación Cur-
ricular project.

3.3 Disparity Topological Indicator

This indicator tries to measure the level of homogeneity of a given analysis unit and it is based
on the previous computations of layers.

Definition 3. Let G be the multidigraph associated to a given analysis unit, as it is shown in the

former section. The Disparity Topological Indicator (DTI) is defined as DTI(G) =
k

#V (G)
,

where k is the number of layers obtained from the above algorithm.

Note that DTI(G) ∈ (0, 1], and the more homogeneity in the unit the closer to 0 the index.
This indicator can also be expressed in percentage terms.

In our study, G(C1) has 1 layer and 4 vertices, so DTI(G(C1)) =
1

4
= 0.25 = 25%, whereas

G(C2) has 4 layers and 6 vertices, giving DTI(G(C2)) =
4

6
≈ 0.67 = 67%. Realise that G(C1)

is closer to 0 than G(C2), so a greater homogeneity is expected in C1.

Eventually, let us remark that ITI and DTI indicators, the construction of the bipartite
graph and the multidigraph associated to a given analysis unit, and the algorithm to split
into layers has been successfully implemented using Maxima, a freely distributed symbolic
calculus program available at any Guadalinex distribution. This can make easier the use of
these topological tools in educative centers, especially in Andalusia.
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7(2):31–34, 2004.

10
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forme español PISA 2006. Gobierno de España, 2007.

[15] E. Ruiz Ballesteros, M. Hernández Raḿırez y E.M. Fedriani Martel. The
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