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ABSTRACT 

 

In Architecture and Technical Architecture Degrees, students use CAD tools (Computer 

Aided Design) which are not capable, in general, of representing graphically curves or 

surfaces starting from its corresponding equations. To get it, users have to define 

specific macros or they have to create a table of points in order to convert a set of nodes 

into polylines.  

 

 CAS tools used in Math classes allow this graphical representation of curves and 

surfaces starting from their parametric equations. However, they lack the dynamical 

development given by CAD tools, which plays a main role in the mentioned degrees. In 

this sense, the complementation of the algebraic and geometric tools included in the 

software of dynamic geometry, GeoGebra, is an attractive alternative to design and 

model, from a mathematical point of view, curves and rigid objects in the space. The 

use of sliders related to the Euler’s angles and the possibility of generating tools which 

project 3D into 2D, makes easier this kind of modeling.  

 

 In the current workshop, we will show how to construct 3D-models of several 

architectonical constructions which have been made in the context of the subject called 

Mathematics for Building Construction II, corresponding to the Building Construction 

Engineering of the University of Seville, which has been implemented this academic 

year 2009-10. 

 

Keywords 

3D-modeling. Building Construction modeling. Perspectives and projections. Dynamic 

geometry. GeoGebra. 

 
1. I$TRODUCTIO$. 

 

Let O be the origin of coordinates of two orthogonal reference systems OXYZ and 

OX’Y’Z’ and let l be the straight line which is the intersection between the planes OXY 

and OX’Y’. The orientation of the latter system with respect to the former is univocally 

determined by the Euler angles: 

 

α: Angle formed by the straight lines OZ and OZ’. 

β: Angle formed by the straight lines OX’ and l. 

γ: Angle formed by the straight lines l and OX. 

 

 The variation of these three angles implies the movement of the second system 

of reference with respect to the first one. Any rigid object whose coordinates are given 

with respect to the mobile system will be moved in the same way. Specifically, α 

determines the inclination angle of the rigid object with respect to the fixed system 

OXYZ and β determines the rotation angle in the plane OX’Y’. As a consequence, any 

tridimensional rigid object can be visualized by any orthographic projection which 

depends on the Euler angles and whose focus is fixed at infinite distance.  

 

 In order to model tridimensional objects, Genevieve Tulloue [1] implemented in 

Cabri [2] the following orthogonal projection of a point P = (a,b,c): 

  

π r (a,b,c) = (r·(a·sin(β) + b·cos(β)), r·(-a·cos(β)·sin(α) + b·sin(β)·sin(α) + c·cos(α))), 
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where r determines the scale of the projection. A similar implementation in GeoGebra 

[3] is given by Rafael Losada [4], who extends in a natural way the point-by-point 

projection of Tulloue in order to project tridimensional curves and surfaces which can 

be defined as a mesh of curves [5]. However, the computation of sequences of curves in 

GeoGebra can be so slow that it is necessary a very powerful computer in order to 

rotate a simple solid like a cone or a sphere. In these cases, it is better to define 

polylines which are based in a high number of points. 

 

 In our study, we are interested in the following two types of surfaces: 

 

A. Those surfaces defined as: 

 

S(u,v) = P + f(u)·g(v) = (p1 + f1(u)·g1(v), p2 + f2(u)·g2(v), p3 +  f3(u)·g3(v)). 

 

B. Ruled surfaces: 

 

S(u,v) = f(u) + v·g(u) = (f1(u)+v·g1(u), f2(u)+v·g2(v), f3(u)+v·g3(v)). 

 

2. DEFI$I$G TOOLS I$ GEOGEBRA. 

 

In this Section, we will show how to define some basic tools which can be used in order 

to work with space curves and surfaces in GeoGebra.  

 

 The first step in our worksheet of GeoGebra will be the definition of the sliders 

which correspond to the scalar r and the angles α and β. Once we have defined them, we 

have to follow the following steps: 

 

 2.1 Construction of the mobile reference system. 

 

1) Fix the origin O. 

 

2) Determine the coordinate system OX’Y’Z’, by defining three vectors with origin at 

O and extremes at:  

πr(1,0,0) = (r·sin(β), -r·cos(β)·sin(α)). 

πr(0,1,0) = (r·cos(β), r·sin(β)·sin(α)). 

πr(0,0,1) = (0, r·cos(α)). 

 

3) Define a check box “Axes” related to the previous three vectors. 

 

 
Figure 1: 3d axes. 
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2.2 Definition of the Orthogonal Scaled Projection. 

  

1) Define any point in the space as an array of 3 elements. 

Ex: P = {1, 2, 3}. 

 

2) Determine the projection πr of the previous point
1
:  

P’=(r/10(Element[P,1]sin(β)+Element[P,2]cos(β)),r/10(-Element[P,1]cos(β) sin(α) + 

Element[P,2]sin(β)sin(α)+Element[P,3]cos(α))). 

 

3) Define a new tool OSP whose output is P’ and whose input is {P, r, α, β}. 

 

 

2.3 Projection of a space curve C(x) = (c1(x),c2(x),c3(x)), with x in (x0, x1). 

  

1) Define the extremes x0 and x1 of the interval, like numbers or by using sliders. 

 

2) Define the components of the curve as three functions in x. 

Ex: c1(x) = sin(x)cos(x); c2(x) = cos(x);  c3(x) = sin(x).  

 

3) Determine the projection πr of the curve C in (x0,x1): 

C= Curve[r/10(c1(t)sin(β)+c2(t)cos(β)), r/10(-c1(t)cos(β)sin(α) + c2(t)sin(β)sin(α) + 

c3(t)cos(α)), t, x0, x1]. 

 

4) Define a new tool Curve3d whose output is C and whose input is {r, α, β, c1(x), 

c2(x), c3(x), x0, x1}. 

 
Figure 2: Space curve in GeoGebra. 

                                                 
1
 In all the projections, we will divide by 10 to obtain a better effect with the tridimensional axes. 
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2.4 Projection of a surface S(u,v) = (p1+f1(u)·g1(v), p2+ f2(u)·g2(v), p3+f3(u)·g3(v)) 

with u and v in  (u0, u1) and (v0,v1), respectively, by using m u-polylines and n v-

polylines. 

  

A similar construction of the surface defined in 2.4 can be done by using polylines: 

 

1) Define as numbers or sliders the elements p1, p2, p3, u0, u1, v0, v1, m and n. 

 

2) Define the components of the surface as six functions of x.  

Ex: f1(x)=cos(x); f2(x)=cos(x);  f3(x)=sin(x); g1(x)=cos(x); g2(x)=sin(x); g3(x)=1. 

    

3) Determine the projections of the nodes of the m u-polylines and the n v-polylines:  

= = Sequence[Sequence[(r/10((p1+f1(u) g1(v)) sin(β) + (p2+f2(u) g2(v)) cos(β)), r/10(-

(p1+f1(u) g1(v)) cos(β) sin(α) + (p2+f2(u) g2(v)) sin(β) sin(α) + (p3+f3(u) g3(v)) cos(α))), 

u, u0, u1, (u1 - u0)/m], v, v0, v1, (v1 - v0)/n]. 

 

4) Define the projections of the m u-polylines and the n v-polylines: 

Pu=Sequence[Sequence[Segment[Element[Element[=,i],j], Element[Element[=,i], 

j+1]],i,1,n],j,1,m]. 

Pv=Sequence[Sequence[Segment[Element[Element[=,i],j], Element[Element[=,i+ 

1],j]],i,1,n],j,1,m+1]. 

 

5) Define a new tool Surface whose output is {Pu, Pv} and whose input is {r, α, β, m, 

n, p1, p2, p3, f1(x), f2(x), f3(x), u0, u1, g1(x), g2(x), g3(x), v0, v1}. 

 

 
Figure 3: Polygonal surface in GeoGebra.  
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2.5 Projection of a ruled surface S(u,v) = (f1(u)+v·g1(u), f2(u)+v·g2(v), f3(u)+v·g3(v)) 

with u and v in  (u0, u1) and (v0,v1), respectively, by using m u-polylines and n v-

polylines. 

  

A similar construction of the surface defined in 2.4 can be done by using polylines: 

 

1) Define as numbers or sliders the elements p1, p2, p3, u0, u1, v0, v1, m and n. 

 

2) Define the components of the surface as six functions of x.  

Ex: f1(x)=x; f2(x)=x; f3(x)=sin(x); g1(x)=sin(x); g2(x)=1; g3(x)=1.    

    

3) Determine the projections of the nodes of the m u-polylines and the n v-polylines:  

= = Sequence[Sequence[(r/10((f1(u) + v g1(u)) sin(β) + (f2(u)+v g2(u)) cos(β)), 

r/10((f1(u)+v g1(u)) cos(β) sin(α) + (f2(u)+v g2(u)) sin(β) sin(α) + (f3(u)+v g3(u)) 

cos(α))), u, u0, u1, (u1 - u0)/m], v, v0, v1, (v1 - v0)/n]. 

 

4) Define the projections of the m u-polylines and the n v-polylines: 

Pu=Sequence[Sequence[Segment[Element[Element[=,i],j], Element[Element[=,i], 

j+1]],i,1,n+1],j,1,m]. 

Pv=Sequence[Sequence[Segment[Element[Element[=,i],j], Element[Element[=,i+ 

1],j]],i,1,n],j,1,m+1]. 

 

5) Define a new tool RSurface whose output is {Pu, Pv} and whose input is {r, α, β, m, 

n, f1(x), f2(x), f3(x), u0, u1, g1(x), g2(x), g3(x), v0, v1}. 

 

 
 

Figure 4: Ruled surface in GeoGebra.  



3D – Dynamical Geometry in Building Construction.  R. M. Falcón.   7 

 

 

TIME 2010 – Technology and its Integration into Mathematics Education.  

3. SURFACES I$ GEOGEBRA. 
 

The tool Surface can be used in the definition of the most known surfaces. It is enough 

to use the parametric equations determined by the six functions given in Table 1. 
 

Surfaces S Su Sv 

Cilinder 

f1(x)=cos(x); f2(x)=sin(x); f3(x)=1; 

g1(x)=1; g2(x)=1; g3(x)=x.    

Sphere 

f1(x)=cos(x); f2(x)=cos(x); f3(x)=sin(x); 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1.    

Elliptic paraboloid  

f1(x)=sqrt(x); f2(x)= sqrt(x); f3(x)=x; 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1.    

Hyperbolic paraboloid  

f1(x)=x; f2(x)= 1; f3(x)=x; 

g1(x)=1; g2(x)=x; g3(x)=x.    

Cone  

f1(x)=x; f2(x)= x; f3(x)=x; 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1.    

One-sheeted hyperboloid  

f1(x)=cos(x); f2(x)= cos(x); f3(x)=sin(x); 

g1(x)=cosh(x); g2(x)=sinh(x); g3(x)=1. 
   

Two-sheeted hyperboloid 

f1(x)=sinh(x); f2(x)= sinh(x); f3(x)=cosh(x); 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1. 
   

Torus 

Ex: f1(x)=2+cos(x); f2(x)=2+cos(x); f3(x)=sin(x); 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1. 
   

Astroid  

Ex: f1(x)=cos
3
(x); f2(x)=cos

3
(x); f3(x)=sin

3
(x); 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1. 
   

Table 1: Construction of surfaces by using u and v-parametric curves. 
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By using the tool RSurface, we can build all the types of ruled surfaces: 

 

a) Cylindrical surfaces: It is enough to impose g1, g2 and g3 to be constant. 

   

Figure 5: Cylindrical surface. 

 

b)  Conical surfaces: It is necessary to impose all the generatrices to pass through a 

given point P=(a,b,c). Specifically, it must be: 

31 2

1 2 3

( )( ) ( )
.

( ) ( ) ( )

c f xa f x b f x

g x g x g x

−− −
= =  

 

Figure 6: Conical surface. 

 

c) Conoids: They are obtained when all the generatrices of the ruled surface pass 

through a point of the directrix curve and a given point of the axis and they are 

parallel to the director plane. 
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Figure 7: Conoid. 

 

Some known ruled surfaces are determined by the functions given in Table 2. 

 

Ruled surfaces S Su Sv 

Plane 

f1(x)=ax+b; f2(x)=cx+d; f3(x)=ex+f; 

g1(x)=g; g2(x)=h; g3(x)=i. 
   

Cylinder 

f1(x)=cos(x); f2(x)=sin(x); f3(x)=1; 

g1(x)=0; g2(x)=0; g3(x)=1. 
   

Hyperbolic paraboloid  

f1(x)=x; f2(x)= x; f3(x)=1; 

g1(x)=1; g2(x)=-1; g3(x)=4x. 
   

Cone  

f1(x)=cos(x); f2(x)= sin(x); f3(x)=1; 

g1(x)=cos(x); g2(x)=sin(x); g3(x)=1. 
   

One-sheeted hyperboloid  

f1(x)=cos(x); f2(x)= cos(x); f3(x)=sin(x); 

g1(x)=cosh(x); g2(x)=sinh(x); g3(x)=1. 
   

Table 2: Construction of ruled surfaces. 
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4. EXAMPLES A$D EXERCISES. 

 

In this Section, we will show a set of tasks which can be useful in order to practice the 

concepts that we have previously seen: 

 

 Load the tools. 
 

Open a worksheet of Geogebra and open the following files which you can find in 

the folder Tools [6]: 

 

Axes3d.ggt   Elevation.ggt   Curve3D.ggt  Surface.ggt 

RSurface.ggt  Disk.ggt 

 

 

 Construction of the tridimensional axes.  

Axes3d[O, r, α, β]. 

 

1) Create the point O = (0, 0). 

 

2) Hide the bidimensional axes of Geogebra in the menu View. 

 

3) Create three sliders: 

a. The scale r, which can be defined for example in the interval [0.1, 10]. 

b. The inclination angle α. 

c. The rotation angle β. 

 

4) Use the tool Axes3d to create the tridimensional axes. Write in the input  box: 

Axes3d[O, r, α, β]. 

 

5) Create a checkbox related to the elements of the axes: the segments a, b and c, the 

vectors u, v and w and the origin O. The caption of the checkbox will be 3d axes. 

 

6) Save the worksheet as Worksheet0.ggb. 

 
Figure 8: Tridimensional axes. 
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 Orthogonal Scaled Projection.  

OSP[{p1,p2,p3},r,α, β]. 
 

In order to represent a space point in our tridimensional coordinate system, we can 

use the tool OSP. 

 

Example: Let us build a tetrahedron.  

 

1) Open the file Worksheet.ggb. 

 

2) Draw the vertices of the tetrahedron by using the tool OSP. To do it, write in the 

input box the following four commands: 

A=OSP[{-2,5,0}, r, α, β]. 

B=OSP[{5,5,0}, r, α, β]. 

C=OSP[{2,1,0}, r, α, β]. 

D=OSP[{2,3,5}, r, α, β]. 

 

3) Join the vértices by using segments or polygons in order to obtain a tetrahedron. 

 

4) Save the file as Tetrahedron.ggb. 

 

 

 
Figure 9: Tetrahedron. 

 

 

You can move r, α and β to visualize the four faces of the tetrahedron. 
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 Application of the OSP in Building Construction: Elevation of a 

floor plan.  

Elevation[r,α, β,h1,h2,P,Q]. 
 

Example: Let us elevate the following floor plan: 

 
Figure 10: Floor plan. 

The walls have a height of 2.5 meters. The window is in the middle of the wall and it 

is 1 meter x 1 meter.   

 

1) Open the file Worksheet.ggb and hide the 3d axes. 

 

2) Create the following points:  

A=(0,0), B=(5,0), C=(5,2),  D=(5,3), 

E=(5,5), F=(3,5), G=(2,5), H=(0,5).  

 

3) Write in the input box the following commands in order to build the walls: 

Elevation[r, α, β, 0, 2.5, A, B],   Elevation[r, α, β, 0, 2.5, B, C], 

Elevation[r, α, β, 0, 2.5, D, E],   Elevation[r, α, β, 0, 2.5, E, F], 

Elevation[r, α, β, 0, 2.5, G, H],  Elevation[r, α, β, 0, 2.5, H, A]. 

 

4) Write in the input box the following commands in order to build the wall of the 

window: 

Elevation[r, α, β, 0, 0.75, F, G],   Elevation[r, α, β, 1.75, 2.5, F, G]. 

 

5) Save the file as Elevation.ggb. 

 
Figure 11: Elevation of a floor plan. 

 

 

You can move the points A to H in order to modify the structure of the room.  
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 Construction of a space curve: 

C(x) = (c1(x), c2(x), c3(x)), 

where x is in an interval [x0, x1].  

Curve3d[r, α, β, c1(x), c2(x), c3(x), x0, x1]. 
 

Example: C(x) = (2 sin(x) cos(x), 2 cos(x), 2 sin(x)), where x is in [0
o
, 360

o
]. 

 

1) Open the file Worksheet.ggb. 

 

1) Create two sliders x0 and x1, defined as angles in [0
o
, 360

o
]. Move them in such a 

way that x0 and x1 are distinct. 

 

2) Write in the input box: 

Curve3D[r, α, β, 2 sin(x) cos(x), 2 cos(x), 2 sin(x), x0, x1]. 

 

3)  Save the worksheet as Curve3D.ggb. 

 

 

 
Figure 11: Space curve. 

 

You can move x0 and x1 to see the dynamism of your space curve. 

 
Exercise: Construct your own space curve, but try to do it by using at least two 

parameters (sliders) in the definition. 
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 Construction of a surface (m x n-grid):  

S(u,v) = (p1+f1(u)·g1(v), p2+ f2(u)·g2(v), p3+f3(u)·g3(v)), 

where u is in the interval [u0, u1] and v is in the interval [v0, v1]. 

Surface[r,α,β,m,n,p1,p2,p3,f1(x),f2(x),f3(x),u0,u1,g1(x),g2(x),g3(x),v0,v1]. 

 

Example: Let us build a cone (see Table 1).  

 

1) Open the file Worksheet.ggb.  

 

2) Create three sliders p1, p2 and p3, all of them defined in the interval [-5, 5]. 

 

3) Create two sliders h1 and h2 for the heights of the cone, both of them defined in the 

interval [-5, 5]. Move them in such a way that h1 and h2 are distinct. 

 

4) Write in the input box: 

Surface[r,α,β,10,40,p1,p2,p3,x,x,x, h1, h2,cos(x),sin(x),Function[1,1,1],0°,360°]. 

 

5) Save the worksheet as Surface.ggb. 

 

Figure 12: Construction of a cone. 

 

You can move p1, p2, p3, h1 and h2 to see the dynamism of your surface. 

 
Exercise: Select one surface of Table 1 and try to construct it by using the tool 

Surface. Use several sliders in order to obtain a dynamic surface. 
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 Construction of a ruled surface (m x n-grid):  

S(u,v) = (f1(u)+ v·g1(u),  f2(u)+v·g2(u), f3(u)+v·g3(v)), 

where u is in the interval [u0, u1] and v is in the interval [v0, v1]. 

RSurface[r,α,β,m,n,f1(x),f2(x),f3(x),u0,u1,g1(x),g2(x),g3(x),v0,v1]. 

 

Example: Let us build the right conoid generated by the straight lines parallel to the 

plane OXY, of axis OZ and directrix the curve {x=cos(t), y=sin(t), z=t}, with t in 

(0,2π). 

 

2) Open the file Worksheet.ggb.  

 

3) Create two sliders l1 and l2 for the length of the corresponding generatrices, both of 

them defined in the interval [-5, 5]. Move them in such a way that l1 and l2 are 

distinct. 

 

4) Write in the input box: 

RSurface[r,α,β,20,20,cos(x),sin(x),x,0,2π,cos(x),sin(x),Function[0,1,1], l1, l2]. 

 

5) Save the worksheet as RSurface.ggb. 

 
Figure 13: Ruled surface. 

 
You can move l1 and l2 to see the dynamism of your ruled surface. 

 
Exercise: Select one surface of Table 2 and try to construct it by using the tool 

RSurface. Use several sliders in order to obtain a dynamic ruled surface. 
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 Creation of a tool which corresponds to a surface which can be used 

in building construction. 
  
Example: Let us define a tool which can be used to construct a dome.  

 

1) Open the file Worksheet.ggb. 

 

2) Create five sliders: 

a. Three sliders p1, p2 and p3, corresponding to the center of the dome, all of 

them defined in the interval [-5, 5]. 

b. The radius R of the dome, defined in the interval [0.1, 10]. 

c. The basis b of the dome, determined by an angle defined in the interval [0, 

π/2-0.1]. 

 

3) Write in the input box: 

Surface[r,α,β,10,40,p1,p2,p3,R cos(x), R cos(x),R sin(x), b, π/2, cos(x), sin(x), 

Function[1,1,1],0°,360°]. 

4) In the menu Tools, create a tool whose output objects are the two lists which have 

been obtained after using the previous command. The input objects will be r, α, β, 

p1, p2, p3, R and b. Denote the new tool as Dome and write as tool help: 

Select r, α, β, p1, p2, p3 (center), R (radius), b (basis). 

 

5) In the submenu Manage Tools, save the new tool as Dome.ggt. 

 

Figure 14: Construction of a dome. 

Exercise: Create a tool which can be used to construct a cone. You can use the 

construction which we have done in the previous Section. Save the new tool as 

Cone.ggt. 

 

Exercise: Create a tool which can be used to construct a cylindrical pillar. It has to 

depend on the center of the basis, the radius and the height of the pillar. Save the 

new tool as Pillar.ggt. 
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 Construction of a building.  
 

Example: Let us build a cylindrical tower of two floors such that a dome covers its 

top. The cylinder of the first floor has a radius of 3 meters and a height of 4 meters 

and the one of the second floor has a radius of 1.5 meters and a height of 3 meters. 

 

1) Open the file Worksheet.ggb. 

  

2) Use the tool Pillar to create the first floor of the tower: 

Pillar[r,α,β,0,0,0,3,4]. 

 

3) Use the tool Disk to create the ceiling of the first floor:  

Disk[r,α,β,0,0,4,3]. 

 
Figure 15: First floor of a tower. 

 

4) Use the tool Pillar to create the second floor of the tower: 

Pillar[r,α,β,0,0,4,1.5,3]. 

 

5) Use the tool Dome to create the dome of the tower:  

Dome[r,α,β,0,0,7,3,1.5,3]. 

  

Figure 16: Tower of two floors with a dome. 

6) Save the worksheet as Building.ggb. 

 

Exercise: Draw a truncated cone at the top of the dome. You can use sliders in 

order to get the exact position of the cone. 
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Figure 17: Truncated cone at the top of the tower. 

 
4. FI$AL REMARKS.  

  

In this workshop, it has been shown that it is possible to model architectonical surfaces 

in GeoGebra by using sliders related to the main elements of the corresponding 

construction. An advantage with respect to CAD’s is that it is possible to use the exact 

parametric equations of the surfaces. However, a disadvantage that we have observed is 

the need of a powerful computational engine in order to not slow down the work. 

Although the use of polylines improves the speed, we hope next versions of GeoGebra 

will develop this aspect.  

 

The implementation of tools related with Differential Geometry and an exhaustive study 

of different orthogonal projections which can be applied in Descriptive Geometry are 

two possible future works which can be interesting to deal with. 
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