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ABSTRACT 

This study introduces a theoretical framework that can be used to examine the use of 

computer algebra systems in written curricula. This framework was used to examine CAS 

activities and student textbook problems in one US reform oriented mathematics textbook 

intended for students, aged 16-17. The role of CAS in promoting reasoning and proof was 

also examined. CAS was deployed principally by the textbook authors in an active 

fashion and it was the primary means of solving problems when it appeared in the 

textbook. CAS was used primarily as a tool to generate equivalent equations and rarely 

to experiment with function parameters. The majority of the CAS results were non-

formulaic in nature and although the technology can produce purely abstract forms, this 



 

aspect of the technology was rarely used. CAS was used most frequently to assist students 

in identifying patterns within the areas of reasoning and proof. Comparisons between the 

current third edition of the student textbook and the second edition suggest that the CAS 

integration resulted in a pedagogical change in the curriculum by making activities more 

investigative.  

 

 A number of national documents in the United States (Common Core State Standards 

Initiative, 2010; National Council of Teachers of Mathematics, 2000) and other countries 

(Lew, 2008) highlight the importance of technology in helping students to learn 

mathematics. Graphing calculator use has spread in the United States, but computer 

algebra systems (CAS) have not. For instance, only 15% of teachers in the United States 

reported using this technology in a national survey (Braswell et al., 2001).   

 There are a number of possible reasons why this use of computer algebra systems is 

so low. These include the procedural nature of school mathematics in the United States 

(Fey, 1979; Jacobs et al., 2006; National Advisory Committee on Mathematical 

Education, 1975; Stigler & Hiebert, 1999), teachers’ beliefs that teaching is telling 

(Chazan & Ball, 1999; Cooney, 1999), the limited use of CAS in US high school 

mathematics textbooks, and external high stakes exams such as the SAT and the ACT 

which do not allow students to use handheld calculators equipped with computer algebra 

systems.  

 The United States contains several very different educational systems. The majority 

of states in the US allow individual school districts (which contain several schools over a 

variety of geographic areas) to determine which textbooks students will use. The 



 

remaining states contain committees that review textbooks and determine which ones are 

suitable for students. A list of approved texts in an area such as high school mathematics 

are developed by this committee and individual districts or schools can choose from these 

textbooks with the state typically covering the cost of purchasing textbooks.  

 Since large states such as California, Texas, and Florida use state textbook adoption 

committees to determine suitable textbooks there is a strong effort by publishers to tailor 

their products towards these curriculum committees. Consequently, these states help to 

drive the textbook market in the United States (Keith, 1991). In 1989, the National 

Council of Teachers of Mathematics (NCTM) developed the Curriculum and Evaluation 

Standards for School Mathematics (hereafter referred to as the Standards). This 

document made a number of different recommendations for the development of 

elementary, middle, or high school mathematics curricula. However, given the textbook 

market in the United States and the radical vision proposed in the Standards, the 

government knew that the only way that curricula aligned with this document would be 

created is through government intervention. Thus, during the 1990’s the National Science 

Foundation (NSF) in the United States funded a total of 13 curricula at the elementary, 

middle, and high school levels.  

 These curricula have often been grouped together and given different labels: reform-

oriented, Standards-based, or NSF-funded. Curricula that were not part of the NSF 

funding have frequently been described as conventional mathematics curricula (Stein, 

Remillard, & Smith, 2007). Reform-oriented curricula typically contain greater 

concentrations of the following categories than conventional curricula: technology, 



 

alternative representations, real-world contexts, and mathematical processes (e.g., 

communication).  

 One difference between the use of technology in conventional curricula and reform-

oriented programs is captured in the following two figures. Figure 1 provides as example 

from a conventional curricula where graphing calculator technology is used to solve a 

mathematical problem by presenting students with an alternative representation, this case 

a graph, instead of solely a symbolic representation.  

 

Figure 1. Use of technology to solve a mathematical problem from a conventional 

mathematics curriculum (Carter et al., 2010, p. 545).  

 In Standards-based curricula technology is used as a tool to solve mathematical 

problems, but it is also used to help students to learn mathematical concepts. For 

example, in Figure 2, taken from the Core-Plus Mathematics program (Hirsch et al., 

2008, p. 474) students use graphical and tabular representations to understand the effect 

of a on the general quadratic function y = ax2. 

 



 

Figure 2. Use of technology to develop a quadratic function concept within a reform-

oriented curriculum.  

 When the Standards were developed many conventional curricula included the use of 

scientific or four-function calculators. Another common integration of technology at this 

time was the use of BASIC computer language programs to perform a variety of different 

mathematical functions. During the late 1980’s the University of Chicago School 

Mathematics Project (UCSMP) curriculum, designed for students aged 12 – 18, 

foreshadowed several of the recommendations of the Standards. In the area of 

technology, the curriculum integrated use of automatic graphers (i.e., graphing 

calculators) as seen in Figure 3. 



 

 

Figure 3. Early use of graphing calculators in an early reform-oriented mathematics 

textbook intended for students aged 16 to 17 (McConnell, 1990, p. 595). 

 Handheld CAS machines became widely available in 1995 with the advent of the TI-

92 calculator. Since this was near the end of the development period for the first edition 

of Standards-based mathematics textbooks only one of these programs incorporated CAS 

technology: Mathematics: Modeling Our World (Garfunkel, Godbold, & Pollak, 2000). 

Screen shots of the CAS available on a TI-92 calculator appeared infrequently in the 

fourth course of this textbook series. One of these examples is shown in Figure 4.  



 

 

Figure 4. Early CAS use in a reform-oriented mathematics textbook designed for 

students aged 17-18 (Garfunkel, Godbold, & Pollak, 2000, p. 199).  

 Despite this early use of CAS it appeared primarily as screenshots with some 

accompanying textual explanation. The authors did not expect students to possess this 

technology, thus this use of CAS was passive as opposed to active. That is, students were 

asked to read the examples, but they could not perform the same commands depicted in 

the screen shots on their own.  

 Within the last couple of years CAS has been integrated into three mathematics 

programs designed for students in the United States. These programs are Core-Plus 

Mathematics (Fey et al., 2009), CME Project (Education Development Center, 2009), 

and the third edition of the University of Chicago School Mathematics Project (Flanders 

et al., 2010). Since CAS has appeared only recently in mathematics textbooks in the 

United States, the purpose of this study is to present a framework for examining CAS use 

within the written curriculum, present the results of using this framework to note how 



 

CAS is used in one secondary mathematics textbook, and describe how CAS is used in 

reasoning and proof in this textbook. 

Methods 

Curriculum 

 Although the University of Chicago School Mathematics Project (UCSMP) set of 

textbooks predated the Standards by a few years and received funding from private 

foundations it has been considered a Standards-based mathematics program (Senk & 

Thompson, 2003). This curriculum is unique in that it spanned six different years from 

age 12 up through the last year of high school – age 18. Most high school mathematics 

programs only included three to four years. The developers expected students to read this 

curriculum. In addition, it included the use of technology and real-world contexts to help 

students understand mathematical concepts. This textbook series used the acronym SPUR 

to recognize the importance of skills, properties, uses, and representations in its design. 

The teacher’s edition of the Advanced Algebra (Flanders et al., 2010) textbook was the 

focus of this study as it was believed that content that was more advanced than the 

beginning algebra course would contain more frequent and varied CAS use. The 

Advanced Algebra textbook contains direct and indirect variation, matrices, power 

functions, inverses and radicals, trigonometry, polynomials, and series. The teacher’s 

edition contains the student textbook as well as teacher resource materials in the outer 

margins and on separate pages.   

Framework 

 Technology. This study began with an examination of different technology-based 

articles for frameworks that could be used in categorizing technology use within the 



 

written curricula. A constant comparison methodology (Glaser & Strauss, 1967) was used 

to refine the initial framework by using CAS examples from the textbook itself. One 

research article appeared to be particularly suited to the purposes of this study as it 

describes different roles that CAS can take on within mathematics curricula.  

 Heid and Edwards (2001) describe four different roles for CAS in mathematics 

curricula. First, they state that a CAS can be the “primary producer of symbolic results” 

(p. 130). As a result the curriculum could ask students to focus on other important 

mathematical processes such as translating a problem set within a realistic context to a 

mathematical setting by way of a formula or equation.  

 Second, the CAS could be used to produce symbolic procedures as seen in Figure 5. 

Here the CAS is used to perform the symbolic procedures associated with solving a linear 

equation leaving the user to focus on determining the steps needed to solve the equation 

or the concepts behind solving an equation. The CAS could also be used in this role to 

help students learn how to solve equations and detect efficient from inefficient procedural 

steps. 

 

Figure 5. Using a CAS to solve a linear equation.  



 

Third, a CAS can help students generate a number of different examples from which 

patterns in symbolic forms can be detected. An example of this use of the CAS is seen in 

Figure 6. Moreover, this use of the CAS fits nicely with what some describe as what is 

really all about, identifying patterns (Steen, 1990).  

 

Figure 6. Using a CAS to multiply binomials and trinomials of particular forms from 

which to identify a symbolic pattern. 

 Fourth, the CAS can be used to produce symbolic formulas as seen in Figure 7.  

 

Figure 7. Using the CAS to manipulate symbolic forms that are entirely abstract or 

represent a general case. 



 

In this case, students could be given a measure of independence to create their own 

formulas or work with completely abstract forms instead of relying on the textbook to 

provide them with this information.  

 These roles as well as how CAS was actually used in different reform-oriented 

mathematics textbooks led to the framework used in this study. The UCSMP Advanced 

Algebra (Flanders et al., 2010) student textbook provides completed examples for 

students to read as well as activities that students are expected to complete. This led to 

characterizing the CAS Interaction Level as either passive or active. Figure 8 depicts a 

passive use of CAS as students are simply asked to read through this example, not engage 

in using CAS themselves. 

QuickTime™ and a
 decompressor

are needed to see this picture.

 

Figure 8. Passive use of CAS in the Advanced Algebra (Flanders et al., 2010, p. 23) 

textbook.  

An active use of CAS appears in Figure 9. This is a portion of an activity that students are 

asked to complete as part of their reading of a textbook the night before class is to take 



 

place or during the classroom lesson. It is active since students are asked to use their own 

CAS machines to evaluate a function at a specific value.  

QuickTime™ and a
 decompressor

are needed to see this picture.

 

Figure 9. Active use of CAS in the student textbook (Flanders et al., 2010, p. 22). 

 Examinations of the UCSMP textbook at the center of this study also revealed that 

CAS results could be isolated from other student work or connected. In the first case, 

students were simply asked to execute some command on the CAS such as factoring the 

expression x2 – 1 and nothing more. An example of this is seen in Figure 10 as students 

are simply asked to evaluate a function at a specific value with the use of a CAS.  



 

QuickTime™ and a
 decompressor

are needed to see this picture.

 

Figure 10. Isolated use of a CAS result (Flanders et al., 2010, p. 22). 

 In the second case, the visible result or the invisible procedure that the CAS used to 

produce it could be an object of reflection by the user. Another possibility is that the CAS 

result could be used by the individual in another task either with or without the use of 

technology. In both of these possibilities, the CAS result is connected. In Figure 11, 

students are asked to use CAS factorizations to describe how to factor different 

polynomial expressions. 

 

Figure 11. Connected use of CAS within the student textbook (Flanders et al., 2010, p. 

746). 



 

 Although a CAS operates with symbolic forms, handheld calculators, which contain 

this feature, also possess a number of other functions. This aspect of the framework 

characterizes the nature of the results produced by the CAS-equipped handheld. For 

instance, the results can be numerical in nature when a spreadsheet, matrix, or home 

screen is used. The results may be of a graphical or geometrical nature when the dynamic 

geometry system on the handheld is used. Within the CAS functionality results may be 

formulaic as seen in Figure 7 above or non-formulaic. That is, the results involve a 

combination of numbers and variables as depicted in Figure 6. The variety of uses of the 

CAS-equipped handheld were also coded and placed into the following categories: 

number, matrix, spreadsheet, function, and graph/geometry.  

 Analyses of the text also revealed that although a CAS machine was used frequently, 

it wasn’t always the primary tool used to solve a problem. In some instances it was and 

when this occurred it was coded as primary tool, while in other cases when it was used as 

just one step in the solution process it was coded as secondary. In other cases, the CAS 

wasn’t used to solve a problem, but it provided a backdrop for students’ problem solving 

capabilities. For instance, students might be asked to make sense of a result produced by 

a CAS for some other problem.  

 The nature of the how the CAS was used was also coded and placed into one of four 

different categories: equivalent expressions, equivalent equations, parameter 

experimentation, or pattern generation. As in the other aspects of the framework, these 

uses were developed from a combination of examining articles on technology as well as 

examinations of the textbook itself.  



 

 Reasoning and proof. Stylianides (2008) describes a framework that he used to 

examine reasoning and proof within a middle school reform-oriented mathematics 

curriculum developed in the United States. His framework involved three different 

components: mathematical, psychological, and pedagogical. This study involves several 

adaptations of his mathematical component. These adaptations included testing 

conjectures and the use of technology to assist students in identifying patterns, 

developing and testing conjectures, and fashioning proofs. A textbook question or 

imperative directed towards students was distinguished from a conjecture if it contained 

some aspect of uncertainty (e.g., could or may). In addition, technology was considered 

as helping students to develop a proof if it was used to complete a procedure that the 

students had demonstrated paper-and-pencil proficiency with involving formulaic forms.  

 Curricular change due to technology. Cole and Griffin (1980) describe the use of 

technology as an amplification of human capabilities. They give an example of a pencil 

as a form of technology that amplifies students’ abilities to remember a long list of 

words. Pea (1985), on the other hand, describes the use of technology as a reorganizer 

that has the potential to reorganize how individuals think. He goes on to give examples of 

how an electronic spreadsheet fundamentally restructures the budgeting process by 

making planning and hypothesis testing the primary mental operations instead of the 

quantitative process of developing a budget. These ideas were used to consider the effect 

of CAS on the curriculum as well as thinking more specifically in terms of pedagogy, 

sequencing of mathematics materials, mathematical processes (e.g., problem solving), 

and mathematical content. The UCSMP Advanced Algebra (Flanders et al., 2010) makes 



 

a good candidate to examine curricular influences due to CAS, as the second edition of 

Advanced Algebra (Senk et al., 1996) does not include this technology.  

 A hard copy of the teacher’s edition of the Advanced Algebra (Flanders et al., 2010) 

was examined page-by-page for indications of CAS use. The word CAS or screen shots 

of a CAS indicating that this technology had been used in the solution of a problem were 

used to locate CAS components that were subsequently analyzed using the framework 

described above. Graphing calculator use was also noted. If a question involved 

technology use that could be attributed to a graphing calculator it was coded as such, but 

if the screen shot or questions asked suggested CAS use it was coded as this technology. 

Components were located at the activity or student problem level. Each component was 

coded in the textbook using post it notes. Later the location, codes, and justifications 

were placed into electronic tables. These tables were saved as text files and were coded 

using HyperRESEARCH (ResearchWare, 2009). Frequency reports were developed 

using this software.  

Results 

 An initial analysis of the textbook reveals that 63% of the technology occurrences 

involved CAS use with the remainder being graphing calculator use. The focus of this 

paper is on CAS use so the rest of the analyses will focus on this technology use in the 

curriculum. The majority of the CAS uses were active (62%) as opposed to passive. The 

CAS depicted in the textbook is generic. However, CAS in general, possess a variety of 

different capabilities as described earlier. Table 1 shows the frequencies within these 

different categories. The majority of the machine specific uses were in the area of 

function with matrices appearing second often. This finding exemplifies the recent goal 



 

of reorganizing a textbook around the big idea of functions described in the most recent 

set of standards from NCTM (2000).  

Table 1 

Machine Specific Capabilities 

Capability Frequency 

Function 28 

Matrix 22 

Graph/Geometry 13 

Spreadsheet 10 

Number 10 

Total 83 

 

 A summary of the different roles in which the CAS was used appears in Table 2. The 

majority of roles for the CAS were devoted to equivalent equations with expressions as a 

close second. Although functions were used frequently in terms of the machine specific 

capabilities described above, parameter experimentation was used quite infrequently to 

investigate the nature of different function families.  



 

Table 2 

CAS Roles 

Role Frequency 

Equivalent Equations 81 

Equivalent Expressions 41 

Pattern Generation 14 

Parameter Experimentation 4 

Equivalent Inequalities 2 

Total 142 

 

 The textbook authors used CAS as the primary means of solving problems (67% of 

occurrences) as demonstrated in the textbook or in problems directed towards students 

with 67% of occurrences. CAS was a secondary means of solving problems in 32% of the 

occurrences and in only 1% of the cases was CAS used as a backdrop in the problem 

solving process.  

 The nature of CAS results in the textbook are shown in Table 3. The vast majority of 

CAS uses were in the area of non-formulaic results with numeric results being the second 

most frequent category. Despite the CAS’s proficiency with formulaic forms this 

appeared least frequently among the different categories. 



 

Table 3 

Nature of CAS Results 

Category Frequency 

Non-formulaic 135 

Numeric 55 

Graph/Geometry 19 

Formulaic 16 

Total 225 

 

 Out of a total of 225 CAS episodes, 69 involved some component of reasoning and 

proof or 31%. CAS was used most frequently to identify patterns and least frequently to 

test conjectures. This is somewhat surprising as it was thought that technology would be 

used least frequently in argument development. Another interesting finding is that it was 

hypothesized that the categories for conjecture development and conjecture testing would 

be roughly equivalent as students would test the conjectures that they developed, but 

students were asked to use a CAS roughly four times as often for developing conjectures 

as testing them. Consequently, there appeared to be a mismatch between the actions of 

conjecture development and conjecture testing. 

 The only area in which there was evidence to conclude a curricular change due to the 

use of CAS was within the pedagogical category. For instance, the second edition of 

Advanced Algebra (Senk et al., 1996) simply stated the Binomial Square Factoring 

theorem as seen in Figure 12.  



 

 

Figure 12. Formal presentation of the binomial-square factoring theorem (Senk et al., 

1996, p. 687).  

This theorem was “discovered” by students with the use of CAS in the activity depicted 

in Figure 9, taken from the third edition of Advanced Algebra (Flanders et al., 2010). 

There were no significant changes in terms of sequencing and mathematics content. Due 

to some of the uses of the CAS as seen in Figure 11 and in other places where students 

were asked to notice patterns they developed more proficiency identifying algebraic 

forms instead of simply applying algebraic procedures. The chapters and the order in 

which they appear within the second edition is nearly identical to that within the third 

edition, thus there were few instances of content or sequencing curricular changes due to 

the inclusion of CAS.  

Discussion 

 This study presented a framework that could be used to examine the use of CAS 

within a variety of different curricula. One of the observations of these findings is that the 

percentages for some categories of CAS use as well as the use of technology to promote 

reasoning and proof certainly could have been higher. This is seen in the category of 

pattern generation. That is, there could have been a greater integration of CAS use within 



 

the curriculum. For instance, in the unit on logarithm properties students could have been 

asked to notice a pattern in the logarithm of different quotients with the aid of a CAS, 

develop and test conjectures, and eventually produce a proof for the logarithm of a 

quotient theorem. Instead, students were presented with the theorem in a highlighted box 

and asked to complete components of the proof in a student exercise.  

 Comparing the effects of CAS integration between the second and third editions 

illustrate that the textbook authors conceived of the technology as an amplifier of human 

cognitive capabilities instead of the more powerful reorganizer envisioned by Pea (1985). 

These findings are similar to those reported by Davis and Fonger (2010) who analyzed 

CAS instances within one unit from Advanced Algebra (Flanders et al., 2010) as well as 

two other reform-oriented textbooks. While the textbook authors took chances by 

integrating a technology into the curriculum that many teachers in the United States have 

been reluctant to use, this tool was harnessed to achieve traditional ends. The barriers 

described as the beginning of this paper may have played a role in the textbook authors’ 

decisions around the use of this technology in the curriculum.  

 The results described in this paper could be used as a benchmark for analyzing other 

curricula that currently use CAS either in the United States or in other countries. This 

would permit comparisons between curricula organized for different purposes. An 

important question with regard to this framework is what are the ideal frequencies within 

each of the categories for a specific curriculum? Does this depend on the goals of the 

curriculum? If so, how? A future step in research in this area would be to examine the use 

of CAS within the enacted curriculum and compare those with the analyses conducted on 

the written curriculum. 
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