Integrating Computers into Mathematics classes in a Unique way - Classroom Examples

R. Hoffmann, R. Klein, Kibbutzim College of Education, Tel Aviv, Israel

"In mathematics instruction programs, technology should be used widely and responsibly, with the goal of enriching students' learning of mathematics" (NCTM, 2000).
\square In our efforts to integrate computers into mathematics classes and expose the students to new teaching methods, we developed two technology based courses.

- These courses are taught to mathematics B.Ed and M.Ed students in a teacher training college.

Our aim is to:

Provide tools to solve mathematical problems
Adjust Mathematics Teaching and Learning to Technological Changes Improve students' math understanding Motivate students to learn mathematics

Our aim is to: (continue)

Raise students' mathematical curiosity as to how the computer functions

How does the computer do it?

How does he know?

The students get acquainted with the mathematical ideas and numerical methods embedded in the computer, calculator and graphic calculator.

In other words, they learn "the story

 behind the key".
two major subjects of the course are:

- Calculating the digits (to a desired accuracy) of irrational numbers (e, $\pi, \sqrt{2}$)

In this presentation we focus on: finding the square and cubic roots of a given number.
solving equations (one of the oldest subjects in math) Two methods will be presented

We present:

- Heron's method

- The intuitive 'trial and error' method

For computing the square root and the cubic root (do not require profound math knowledge)

- Bisection method
- Newton Raphson Method

The last 2 methods are very powerful for solving equations in general

Heron's iterative formula for computing the square root of s (a given positive number)

His method was based on:
Getting a sequence of rectangles, all with area S, so that both sides are getting closer to each other. As a limit of the sequence we get a square. The side of which is the desired square root of S.

Heron of Alexandria 100 a.d.
\square At first the students use calculators and see that using Heron's method yields the desired root quite quickly.

Then they write an algorithm and translate it to a computer program using excel, realizing the "strength" of computers (generalization for every square, quick and easy way to get the answer).
\square They construct a permanent software that is both efficient and fully automatic.

The students generalize-

Computing the cubic root of a given

number

This method is based on:
Getting a sequence of parallelepipeds all with volume V and a base which is a square with sides m.
The height h is getting closer to the base side m in each iteration.

As a limit of the sequence we get a cube.
The sides of which are the desired cubic roots of V.

The intuitive 'trial and error' method
Based on finding 2 sequences of
upper and lower bounds which get closer and closer to the root, until the desired accuracy is reached.

Done in a similar way as making a binary search.

שיטת הרון

$\frac{\mathbf{a}}{1}$	$\frac{\mathbf{h}}{72}$	$\frac{\mathbf{v}}{72}$
24.66667	0.118335	
16.48389	0.26498	
11.07759	0.586735	
7.580636	1.252914	
5.471395	2.405118	
4.449303	3.637044	
4.17855	4.123645	
4.160248	4.160006	
4.160168	4.160168	

שיטה של ניOוי וטעיה

\mathbf{a}	$\frac{b}{5}$	$\underline{\mathbf{x}}$	$\frac{\mathbf{x}^{\wedge} 3}{4.5}$	91.125
4	4.5	4.25	76.76563	
4	4.5			
4	4.25	4.125	70.18945	
4.125	4.25	4.1875	73.42847	
4.125	4.1875	4.15625	71.79678	
4.15625	4.1875	4.171875	72.60957	
4.15625	4.171875	4.164063	72.20241	
4.15625	4.164063	4.160156	71.99941	
4.1601156	4.164063	4.162109	72.10086	
4.160156	4.162109	4.161133	72.05012	
4.160156	4.161133	4.160645	72.02476	
4.160156	4.160645	4.1604	72.01209	
4.160156	4.1604	4.160278	72.00575	
4.160156	4.160278	4.160217	72.00258	
4.160156	4.160217	4.160187	72.00099	
4.160156	4.160187	4.160172	72.0002	
4.160156	4.160172	4.160164	71.9998	
4.160164	4.160172	4.160168	72	
4.160164	4.160168	4.160166	71.9999	
4.160166	4.160168	4.160167	71.99995	
4.160167	4.160168	4.160167	71.99998	
4.1601167	4.160168	4.160167	71.99999	
4.160167	4.160168	4.160168	72	
4.160168	4.160168	4.160168	72	

comparison

שיטת הרו\|					
		שיטה של בידים יטעית			
$\frac{3}{1} \frac{h}{45}$	${ }_{45}^{45}$	$\frac{2}{3}$	$\frac{\mathrm{n}}{4}$	$\underset{\substack{\frac{x}{3.5} \\ j, 5 i}}{ }$	${ }^{\frac{\chi^{\wedge} 3}{4285} 5}$
			$\begin{gathered} 4.75 \\ 3.255 \\ 3 \end{gathered}$	$\begin{aligned} & 3,7565 \\ & 3.525 \\ & 3,525 \end{aligned}$	
		${ }_{3}^{3.5}$		${ }_{\text {3.3525 }}$	4, 4.03372
		${ }_{3.5468875}^{3.5125}$	${ }_{\substack{3.6825}}^{\substack{\text { Se25 }}}$	${ }_{\substack{3.55688858}}^{3.585}$	
		cosk			${ }^{45.50835}$
		cosisiseld			4.50888 44.58688
	,	${ }_{3}^{3} 565888$	${ }_{3,55729}^{3,5}$		${ }_{45}^{4500039}$
		${ }_{\substack{3 \\ 3 \\ 3 \\ \hline 55688892}}$			450.004
		come			
			${ }^{3}$	${ }_{\text {3,568888 }}$	4, 4

Solving equations

How can we obtain solutions for any desired

Students are not aware that: accuracy.

There does not exist (and will never be found) a closed formula for solving polynomial equations of an order greater than 4 (Abel, Galois, Lie), and for other non algebraic equations.

How do we solve?

How do graphic calculators, and computer software ..know?

solving equations

To solve $f(x)=0$ (to find the real roots of the equation)
we look for the zeros of the (continuous) function $y=f(x)$

We focus first on the equation $x^{2}-s=0$

$$
f(x)=x^{2}-S
$$

$$
x^{2}-s=0
$$

Bisection method

Choose a relevant interval [a,b] where $f(a)=a^{2}-S<0$ and $f(b)=b^{2}-S>0$
The required value of the positive square root of S lies between a and b (Cauchy's mean value theorem), precisely where the graph of the parabola intersects the x axis.

Finding one positive root for an increasing function
Y Choose a relevant interval $[a, b]$
the graph intersects the x axis) lies between a and b
$f(b)>0$
Let $x m=(a+b) / 2$ be the midpoint of the interval Compute $y=f(x)$
If $y<0$ take x_{m} as the new a else take x_{m} as the new b, etc.

The equations with which we deal have no simple closed formula for their roots, as the quadratic equation has.

We turn to methods of approximating the real roots to some prescribed degree of accuracy.

Examples for Solving equations using

 Bisection methodIn order to solve each of the following equations, Investigate the appropriate function, decide the number of zeros and plot. check with software:
$x^{3}+2 x^{2}+10 x-20=0$ (Fibbonacci, 1225, $x=1.36880810$)
$\square e^{-x}-0.25=0$

- $2^{x}+x-2=0$
- $\operatorname{Sin} x-x / 2=0$
- $X^{7}+2 x-200=0$

Newton Raphson Method

\square finding the roots of $f(x)=0$
(a differentiable function)
\square or finding the zeros of $y=f(x)$

Using the tangent line

- Find the number of zeros
(Using calculus and/or software)
For each of the zeros find a first approximation x_{1} and the point A
Find $a=f^{\prime}\left(\mathrm{x}_{1}\right)$
For each iteration compute

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
$$

$f^{\prime}\left(x_{n}\right) \neq 0$

Solving the equation $x^{2}=s=0$ using Newton Raphson's method yields the same formula (and result)

as

Heron got without using calculus.

Examples for Solving equations using Newton-Raphson's method

Solving the same equations, yields a much quicker solution (second order method)
$x^{3}+2 x^{2}+10 x-20=0 \quad$ (Fibbonacci, 1225, $x=1.36880810$)
$x e^{-x}-0.25=0$
$2^{x}+x-2=0$
$\operatorname{Sin} x-x / 2=0$

- $X^{7}+2 x-200=0$
$n-r . x \mid s$

During the course

\square The students have learned many and varied numerical methods taken from different branches of mathematics.

- Emphasis is given to the mathematical knowledge and to accompanying justifications.
\square The students deal with new and vital subjects (taken from Discrete algorithmic Mathematics and Numerical Analysis),
\square These topics are ordinarily learned in advanced undergraduate mathematics courses or in Computer Science studies
They are absent from the regular curriculum in schools in Israel.

Technological developments make it possible to incorporate selected chapters of these two courses earlier, in high school or even in the upper grades of elementary school curriculum, by adapting the topics to students' knowledge.

It should be pointed out that

In this presentation we showed only a glimpse of what we teach in the courses and how we integrate computers into mathematics classes.

We hope that

- These topics will be integrated into the curriculum
$■$ Our students will be the agents who incorporate it into schools.
$■$ This way of teaching will contribute to raise the next hi- tech generation.

THANK YOU

