Expanding Room for Tacit Knowledge in Mathematics Education

Jozef Hvorecký

Vysoká škola manažmentu, Bratislava, Slovakia

University of Liverpool Liverpool, UK

Mathematics is not a popular subject

Facts:

- Pupils and students are equally intelligent as before
- Mathematics teachers are trying hard
- The negative attitude is long-lasting

What do we do wrong?

Motto 1:

In mathematics you don't understand things. You just get used to them.

Johann von Neumann (1903-1957)

Motto 2:
We used to think that if we knew one we knew two because one and one are two.
We are finding that we must learn a great deal more about „two".

Sir Arthur Eddington
(1882-1944)

Teaching Mathematics is Pure Education

Will Mathematics follow the destiny of Latin?

Business persistency depends on:

- Accountability and responsiveness to the community
- Opening channels for information exchange with its environment
- Building loyalty of your clients

Teaching Mathematics is a Form of Business

Implications for Mathematics teachers:

- Identify its „market value"
- Invite people to share your and their visions
- Form their personal ties to Mathematics
- Learn from Management courses (Knowledge Management, in our case)

Knowledge: Result of Learning

What do we gain during learning?

- Explicit Knowledge:
- Articulated
- Codified
- Stored using certain media
- Tacit Knowledge:
- Only in human brains
- Guides our activities
- The owner may not be aware of it

Knowledge: Result of Learning

What do we gain during learning?

- Explicit Knowledge:
- Articulated
- Codified
- Stored using certain media
- Tacit Knowledge:
- Only in human brains
- Guides our activities
- The owner may not be aware of it

In mathematics you don't understand things. You just get used to them.

Johann von Neumann (1903-1957)

We used to think that if we knew one we knew two because one and one are two.
We are finding that we must learn a great deal more about „two".

Sir Arthur Eddington
(1882-1944)

Tacit and Explicit Knowledge

Prof. Back's lecture (Hagenberg, 2010):

- Calculate

$$
\tan \frac{17 \pi}{3}
$$

$=\{$ factor out $2 . \pi\}$

$$
\tan \left(\frac{6.2 \pi+5 . \pi}{3}\right)
$$

$=\{$ write angle in the form $2 . \pi+\alpha\}$

$$
\tan \left(2.2 \pi+\frac{5 . \pi}{3}\right)
$$

Applications of Tacit Knowledge

- Which operation to use?
- If there are several options, which one is the most appropriate?

$$
\tan \frac{17 \pi}{3}=\tan \frac{(12+5) \pi}{3}
$$

\square Why not 13+4?

- What does „appropriate" mean?

Applications of Tacit Knowledge (cont.)

- Building the solving strategy

$$
\begin{aligned}
& \tan \frac{17 \pi}{3}=\tan \frac{(12+5) \pi}{3} \\
& \tan \frac{17 \pi}{3}=\tan \frac{(18-1) \pi}{3}
\end{aligned}
$$

Several Levels of Tacit Knowledge

1. Which rule to apply?
2. Where do my manipulations lead?

$$
\tan \frac{5 \pi}{3} \text { or } \tan \frac{-\pi}{3} ?
$$

3. Which one is the result?
4. What if my CAS calculates something else?

Nonaka-Takeuchi SECI Model

What Does Mathematics Consist of?

Zimmerman's octagon

Current preferences - „Hard" skills

Predominantly explicit knowledge

CAS Clients' Needs - „Soft" skills

Tacit knowledge is much less stressed

Can Someone Comprehend the Role of Mathematics without Remembering

EVERYTHING?

- Mathematics as a goal - stressing explicit knowledge
- Mathematics as a tool - stressing tacit knowledge

Consequences of the Current Approach

1. Economists, physicians, engineers do not expect that mathematicians could co-operate in solving their problems. (Communication also belongs among "soft" skills.)
2. Many potential job opportunities for mathematicians are lost (by their notcreating).

Thank you for your attention!

jhvorecky@vsm.sk

