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ABSTRACT   

We start seeing physics (Nature, the surrounding environment) with naked eye 

then we would resort to use any available device to see better and to get more insight 

into ‘physics’. The commonly used devices are paper and pencil; one can draw figures 

and curves and do some calculations followed by some conclusions. But since holding 

a physical handle is easier than confining ourselves to the paper and pencil, we do 

experiments to improve our understanding. Continuing this method we may design 

experiments that need more expenditure of time and effort. Hence we resort to the 

virtual world in order to see the real world. In this paper I present some virtual 

experiments by GeoGebra that include the electromotive force induced in a loop while 

entering a uniform magnetic field which first done by MATLAB and locating the 

focus of spherical mirrors that first done by graphing calculator CASIO CFX-9850G 

then continued by GeoGebra due to the efficiencies and the simplicity in using this 

software. Also image formation in spherical mirrors, the relation between refractive 

index and the deviation angle in the prism and the condition for light emergence from 

the prism, inclined plane that acts as a simple brachistron, a euro that rolling around 

stationary euro, and the speed of a slipping ladder are investigated. 

These experiments are more flexible than their real counterparts. For example 

the dimension of the spherical mirror can easily be changed to see its effect on the 

focus position or to see when the spherical mirror equation hold. In addition to the 

ease of changing the refractive index and the prism angle, the curve of relation 

between deviation angle with the incident angle traced simply by changing the 

incident angle and the user can check the arrangement that satisfies the mathematical 

relation that ties the two angles to the refractive index. As to the induced 

electromotive force it visualizes the moving loop and the electric wave which inspires 

a relation between the wave shape and the shape of the loop – I investigated such 

relation for circular loop mathematically, and for trapezoidal and triangular loops only 



experimentally and due to their characteristics, I called these virtual tools virtual 

signal generator. The rectangular loop is clearly stated in the textbooks as an example 

or an exercise. 
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Introduction 
In August of 2006 Dr. Trigo [2] had an interesting presentation of examples of 

usage of Cabri in mathematics teaching and he explained that the educational system 

of Mexico was working on implementing the dynamic geometry in mathematics 

curriculum. After that session I searched for Cabri but I did not find it so I forgot it 

completely. Three years later, in July 2009, professor Zsolt Lavicza gave me the web 

address of GeoGebra. It took me less than one month to stick to GeoGebra – the 

simple and powerful software. GeoGebra Wiki and forum provide many works of 

many students and teachers that mainly deal with mathematics teaching and learning 

but physics problems and exercises are comparatively rare and sometimes not 

presented in a direct manner, for example, image formation in spherical mirrors was 

carried out in accordance with the spherical mirror equation and the focus fixed 

exactly at the middle point of the center and the vertex without any consideration 

about the mirror dimension that can accept such arrangement and equation. 

The following examples give a clear reason to open the Geogebra windows 

towards the physics teachers, and the students that may do some physics, for the sake 

of more fresh teaching and learning methods. 

 

The Sliding Ladder 
The end of a ladder that leans against a wall moves uniformly downward. Will the 

other end move uniformly too? The familiar solution to this problem is 
dt
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tends to zero? The answer becomes clear if we watch the ladder from the 

instantaneous center of rotation. As the user moves the upper end of the ladder 

downward, the instantaneous center of rotation goes nearer to the end of the ladder 

therefore the ladder almost rotate around its lower end and the vector of velocity – 



seen from the instantaneous center of rotation – almost becomes parallel to the wall 

(y-axis), see figure 1. An slider introduced to make the motion more smooth and to 

hold the ladder from penetrating the ground. 

 

 

 

Figure 1. Two snapshots of the sliding ladder.

 

 

The Rolling Euro 
How many revolutions will a euro make when rolled completely around a 

stationary euro? Or does the earth rotate 360o in a day? 

The common sense would be happy with one revolution for the rolling euro or 

360o per a day for the rotating earth. This is true if we watch the rolling objects from 

the instantaneous center of rotation. As figure 2 (a) shows the lengths of arcs FK and 

FE remain the same at any instant and if the radiuses of the two circles are equal then 

the corresponding angles also are equal which indicates that only one revolution 

would be done. 

  



(a) – seen from instantaneous center of rotation. (b) – seen from a stationary point as the earth seen 

from a distant star. 
Figure 2. A circle is rolling around a stationary circle with the same radius. 

 

Now, let’s look at the rolling objects from another point. The motion starts 

from x-axis so the angular displacement of the radius that coincides with this axis at t 

= 0 to be investigated. Figure 2 (b) shows a picture of this angular displacement which 

is greater than the angular displacement seen from the instantaneous center of rotation 

by α. Check α variations during the motion. If you satisfied with a euro rolling around 

another one, save the two and continue working with GeoGebra simulation; change 

slider n to 0.5 (use arrow keys for fine adjustment) and guess the number of 

revolutions that would make by the rolling circle. Instead of continuing reading let’s 

break for trying different values of n, and to switch from guessing to formulating. Ok, 

as you noticed the length of arc FE in figure 2 (b) is Rθ and for FK is nRφ - nRθ and 

equating these quantities leads to: 
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⎝
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n
11   (1) 

According to equation (1) we would get one revolution if n tends to infinity. 

But what is the infinity in physics? Compared to the electrons-nucleus distance a 

millimeter is infinity. In some circuits a fraction of a second is infinity. Choose a very 

small value for R and a large value for n and find a reasonable value for infinity – a 

large gear that rolls a turn around a thin axis, rotates approximately one turn around 

its center.  

 

Simple Brachistochrone 
Two inclined planes coincide with the chords of the same circle of radius R. A small 

body slides down each of them without friction and without an initial velocity. For 

which of the planes is the time of sliding greater? [4] 

A slider controls the gravity acceleration. Move point C, the release point, to 

change the inclination of b and watch the elapsed time that visualized as dynamic text. 

Repeat this experiment with point E. For the moving point C there are infinite number 

of isochronous paths – with different lengths and equal elapsed time. There is no 

maximum or minimum of time so each path may be considered as a simple 

brachistochrone that consisted of a chord of circle instead of being a piece of cycloid. 



This is a good starting point to encourage students to think about a path that would be 

isochronous for any starting point on it – the brachistochrone. 

 
Figure 3. A Simple Brachistochrone compared to an inclined plane. 

 

Spherical Mirrors 
Spherical mirrors are a good subject of practicing geometry and applying good 

approximations to the real word. The golden rule in constructing a simulation for 

these mirrors is to use only the law of reflection. Such constructions are depicted in 

figures 4 (a) and (b). Figure 4 (a) shows light rays parallel to axis of the mirror and 

their reflections that converge on the axis. The convergence point, by definition, is the 

focus and it reaches the midpoint of the center and vertex only when the length of 

mirror arc tends to zero [1]. Don’t stick to intangible thinking. This zero has the same 

story of the infinity in physics. Why the zero can not be more than one while the 

infinity can be less than one? Tick the ‘Check Mirror Dimension’ box and move the 

upper end of the mirror arc and check the live text to see when does f equal r/2. The 

mirror dimension that satisfies this equality changes with varying accuracy (chosen 

from the menu options / rounding). 

 

 
(a) Setting a proper dimension for the mirror. 

 
(b) Image formation in the mirror. 

Figure 4. A spherical mirror.

 



After setting a proper dimension for the mirror, conduct some experiments 

simply by changing the object position. Check the arrangements that satisfy the 

spherical mirror equation and the equation of linear (lateral) magnification. Check 

questions like: Why do the equations of spherical mirror and linear magnification 

work properly for some values of object position and fail for some others values? 

Why the focal length equals one-half the radius of curvature? Why do we use paraxial 

rays in studying image formation in spherical mirrors? Why the spherical mirror is a 

very small portion of a sphere? I started constructing this virtual experiment for 

concave mirror but it works properly for convex mirror, why? 

 

Prism 
Prism includes some parameters tied together with simple but precise 

computations that when seen from the window of dynamic geometry GeoGebra will 

reveal beauties similar to the light spectrum formed by the prism. Figure 5 shows a 

monochromatic ray traced through a prism by refraction laws. 

 

 
Figure 5. The trace of a monochromatic ray in a prism. 

 

Here, the condition of light emergence from the prism and the condition for 

which the equation 
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holds are investigated. Let’s check the emergence condition first because there would 

be no deviation angle when light can not emerge from the prism and the equation (2) 

would make no sense. Only when i1 < ic the light will emerge. ic is the critical angle 



and connected to the refractive index by 
n

ic
1sin =  but it is evident from the geometry 

of figure 5 that A = r + i1 and the light emergence condition becomes 

cirA +<    (3) 

Sebenne and Balkanski [5] used refraction laws and considered the maximum 

value of the trigonometric function sine to obtain ciA 2< . Choose light emergence 

condition and change the light source position to see that such condition always works 

but with a large blank interval. To skip the blank interval rewrite the inequality (3), 

using laws of refraction, as following 
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A point plotted on x-y plane with incident angle i as its x-coordinate and the 

right side of the above inequality as its y-coordinate. This point that its coordinates 

attached to it by dynamic text, traces a curve in 2/0 π≤≤ x  that the acceptable 

values of angle A lie beneath it. Note that the condition of light emergence indicated 

in its y-coordinate. Condition of ciA 2<  also shown as live text at the upper left 

corner. Compare the two conditions and see how the computer assisted teaching 

shortens the route of mathematical reasoning and eliminates the blank interval. Now, 

return to equation (2) which in some texts like Halliday’s Physics [3] derived by 

assuming i = r1 and in Síbenne’s and Balkanski’s Physics a detailed derivation is 

presented [5]. Figure 5 shows that AriD −+= 1 . Tracing the light ray in reversed 

route – expressing r1 in term of i – leads to: 
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Equation (5) treated as inequality (4). Choose ‘Minimum Deviation Angle’ 

box, vary the angle i and keep an eye on the dynamic text that shows equation (2). If 

you get the same number determined by slider n (you may need a longer format of 

number, controlled from option menu) then check the light rays; do you see any 

symmetry? Move point B to change the prism shape, and repeat the experiment; what 

about the symmetry? What about the position of the moving point that traces the 

curve? Examine the deviation angle while you change the angle i . 

 



Virtual Signal Generator 
A rectangular loop enters a uniform magnetic field B with a constant velocity 

v. Plot the induced emf [see example 2, pp. 580-581 of ref. 3]. According to Faraday’s 

law of induction and the uniformity of B, the main mathematical idea in solving this 

problem is time derivative of an area of the loop that entered the magnetic field. To do 

so, it is sufficient to pass an area say a rectangle across a line 0xx = , see figure (6). 

 

     
Figure 6. A conducting rectangular loop enters a uniform magnetic field. 

 

The previous positions of the rectangle which is needed for calculating the 

differences are traced by another exactly similar area that lagged the first by a time 

difference tΔ . In my experiments st 01.0=Δ and the goal is to investigate the wave 

shape of induced emf so the values of the graphs and magnetic field B are not given in 

real scales. However one can calculate the real values, assuming B is 0.1 of values of 

slider Mfield, and attach them to the tracing points as live text – as I did with the 

prism. The wave shape in these experiments suggests good likeness of corresponding 

loop so this method can be used with any shape of loop to produce the desired wave – 

in theory, we have a signal generator that virtually can generate any form of waves. 

 

Conclusion 
Virtual experiments done by dynamic geometry can extend the physics 

laboratory to some limits that are not reachable in real world. Especially when 

repeating an experiment with different arrangements is needed for many times; 

changing the shape of a prism, varying the radius of a wheel or gear, looking at a 

sliding ladder from a point that shows its rotational movement, changing the radius 

and dimension of spherical mirror, and varying the index of refraction are good 

examples of such experiments. 



To interpret the likeness in induced emf consider an area A produced with 

( )xfy =  , bxa ≤≤ , and passing across a line 0xx =  then the time derivation of the 

passed area becomes 
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so 

( )( )txfv
dt
dA

⋅=  (7) 

Thus for constant speed of a loop the rate of change of area with time follows 

a curve with some likeness of the curve of f(x). It is clear that we can not represent a 

loop by a function but we can divide it into some pieces each produced by a function. 

For example a circular loop with radius r and center (a,b) can be created by 
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And according to equations (6) and (7) 

( ) ( )( ) ( )22
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As always, the math leads the technology by showing the right way that the 

technology must follow but how to deal with a loop like figure (7) (a)? 

 

 
(a) 

 
(b) 

Figure 7. A loop with a complicated shape. 

 

Here, the integrand of equation (6) is unknown and it should be very 

complicated. Hence the technology would be the last refuge – one good turn deserves 

another. Mathematical rules guide the technology and the technology carries the 

mathematical loads. GeoGebra does not give the opportunity for creating such shapes. 

However, this is a good opportunity to ask the GeoGebra developers to add some 



facility to enable us to draw shapes just as we do in Microsoft Paint and to know the 

area of something like the dyed zone in figure 7 (b) which enclosed between a part of 

the drawn shape and a vertical line. 
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