Taking advantage of Sherman's march

Pablo Guerrero-García¹ and Matías Toril-Genovés²

¹Department of Applied Mathematics ²Dept. Communications Engineering University of Málaga Spain

pablito@ctima.uma.es¹, mtoril@ic.uma.es²

Lecture Proposal for the ACDCA strand

ABSTRACT

During the simulation of a mobile telecommunications system, a sequence of systems of linear equations must be solved. In this sequence, the coefficient matrix of the (k+1)th system is of order one greater than that of the *k*th, and the former is constructed by enlarging the latter with a new column and a new row. All matrices involved are strictly diagonally dominant, but the condition number suffers a heavy worsening as *k* increases. In this lecture we show that taking advantage of this diagonal dominance property is crucial to be able to obtain as much as a 30% improvement on average in the CPU time to complete the whole process in MATLAB v7.5.

Keywords

LU decomposition, updating, leading principal submatrix, Sherman's march, strictly diagonally dominant.

Observations

This work has been supported by the Spanish Ministry of Science and Innovation (grant TEC2009-13413). It is available at <u>http://www.matap.uma.es/investigacion/tr.html</u> as Tech. Report MA-10/01, Dept. Applied Mathematics, Univ. Málaga, 29th January 2010.